实体对齐7.ACL2019:(GMNN)Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network

本文介绍了ACL2019上关于跨语言知识图谱对齐的研究,重点探讨了使用图匹配神经网络(GMNN)的方法,包括构建主题实体图和应用图匹配模型来实现跨语言实体对齐。
摘要由CSDN通过智能技术生成
  • 关键词:Cross-lingual EA,GCN,Graph Matching

  • 摘要

以往的跨语言知识图对齐研究依赖于仅从单语知识图结构信息中导出的实体嵌入,可能无法匹配在双语知识图中具有不同事实的实体。本文引入了 主题实体图,一个实体的局部子图,用它们的上下文信息来表示实体。从这个角度看,知识库对齐任务可以被看作是一个图匹配问题;在此基础上我们提出了基于图注意的解决方案,该方案首先匹配两个主题实体图中的所有实体,然后联合建模局部匹配信息,得到一个图级匹配向量。

  • 介绍

对于跨语言实体对齐任务,已有多种基于实体匹配的方法被提出。通常,这些方法首先通过编码单语KG事实将每个KG的实体嵌入到低维向量空间中,然后学习一个相似性得分函数,基于它们的向量表示来匹配实体。然而由于不同语言中的一些实体会有不同的KG事实,在实体嵌入中编码的信息可能在不同的语言中是不同的,这使得这些方法很难匹配这些实体。图1展示了这样一个例子,我们想要对齐 e_{0}e_{0}^{'},但它们周围的邻居中只有一个邻居是对齐的。此外,这些方法不将实体表面形式编码到实体嵌入中,也使得匹配那些在KG中有少量邻居且缺乏足够的结构信息的实体变得困难。
  为解决这些缺点,我们提出 主题实体图来表示KG中实体的上下文信息。与以往利用实体嵌入来匹配实体的方法不同,我们将此任务表述为主题实体图之间的图匹配问题。为了实现这一点,我们提出了一种新的图匹配方法来估计两个图的相似度。具体来说,我们先使用GCN编码两个图 G_{1}G_{2},生成每个图的实体嵌入列表。然后,我们通过使用注意力匹配方法将 G_{1}中的每个实体与 G_{2}中的实体进行比较,从而为 G_{1}G_{2}中的所有实体生成跨语言的、支持KG的匹配向量。因此,我们使用另一个GCN在整个图中传播局部匹配信息。这将为用于最终预测的每个主题图生成一个全局匹配向量。这背后的动机是,图卷积可以联合所有实体相似度,包括主题实体和它的邻居实体,编码成一个匹配向量。

  • 方法

1、主题实体图

-
图2展示了 Lebron James在英文和中文知识图谱中的主题实体图。为创建出主题图,我们首先收集主题实体的单跳邻居,得到一个实体集合 ,它们是图的节点。然后,对于每个实体对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>