矩阵置零算法题

给定一个 m x n 的矩阵,如果一个元素为 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法

解题思路:要实现这个算法题本身并不难,只要会简单的遍历和记录即可,关键是需要使用原地算法,即不能创造新的数据结构来记录矩阵,所以解题思路就是用原本的矩阵的第一行和第一列,int两个整数将第一行第一列中是否有零记录下来即可完成此题。代码如下:

class Solution {
    public void setZeroes(int[][] matrix) {
        int m=matrix.length, n=matrix[0].length;
        int row=0,col=0;
        
        for(int i=0;i<m;i++){
            
                if(matrix[i][0]==0){
                   col=1;
                    }
        }
        for(int j=0;j<n;j++){
            
                if(matrix[0][j]==0){
                   row=1;
                    }
        }
       for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(matrix[i][j]==0){
                  matrix[0][j]=matrix[i][0]=0;
                }
            }
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(matrix[i][0]==0||matrix[0][j]==0){
                    matrix[i][j]=0;
                }
            }

        }
        if(row==1){
            for(int j=0;j<n;j++){
                matrix[0][j]=0;
            }
        }
        if(col==1){
            for(int i=0;i<m;i++){
                matrix[i][0]=0;
            }
        }

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值