概率论与数理统计浙大第五版 第二章 部分习题+R代码

4.

(1)
P ( X = k ) = q k − 1 p , k = 1 , 2 , 3 , . . . P(X=k)=q^{k-1}p,k=1,2,3,... P(X=k)=qk1p,k=1,2,3,...
(2)

根据帕斯卡分布定义,其概率分布为
P ( X = k ) = C k − 1 r − 1 p r q k − r k = r , r + 1 , . . . P(X=k)=C^{r-1}_{k-1}p^rq^{k-r}\quad k=r,r+1,... P(X=k)=Ck1r1prqkrk=r,r+1,...
(3)
P ( X = k ) = 0.45 ∗ 0.5 5 k − 1 , k = 1 , 2 , 3 , . . . ∑ k = 1 ∞ P ( [ k % 2 = 0 ] ) = 11 31 P(X=k)=0.45*0.55^{k-1} ,k=1,2,3,...\\ \sum_{k=1}^{∞}P([k\%2=0])=\frac{11}{31} P(X=k)=0.450.55k1,k=1,2,3,...k=1P([k%2=0])=3111

8.

由于终端显示不全,仅在上面代码区展示

两个小问也在注释中说明。

在这里插入图片描述

在这里插入图片描述

15.

P ( X ≤ 10 ) = ∑ k = 0 10 C 5000 k ( 0.0015 ) k ( 1 − 0.0015 ) 5000 − k P(X\leq 10)=\sum_{k=0}^{10}C_{5000}^{k}(0.0015)^k(1-0.0015)^{5000-k} P(X10)=k=010C5000k(0.0015)k(10.0015)5000k

在这里插入图片描述

在这里插入图片描述

18.

F ( x ) = { 0 , x < 0 x a , 1 ≤ x < 2 1 , x ≥ 2 F(x)=\left\{\begin{aligned}0,\quad\quad\quad x<0\\\frac{x}{a},\quad1\leq x<2\\1,\quad\quad\quad x\geq2\end{aligned}\right. F(x)=0,x<0ax,1x<21,x2

22.(1)

∫ − ∞ + ∞ f ( x ) = 1 x ≤ 0 F ( x ) = ∫ − ∞ x f ( x ) = ∫ − ∞ x 0 d x = 0 x > 0 F ( x ) = ∫ − ∞ 0 f ( x ) + ∫ 0 + ∞ f ( x ) = 0 + ∫ 0 + ∞ A x 2 e − x 2 b = ∫ 0 + ∞ − A b 2 x d e − x 2 b = − A b 2 x e − x 2 b | 0 + ∞ + A b 2 ∫ 0 + ∞ e − x 2 b d x = A b b 2 ∫ 0 + ∞ e − u 2 d u = A b b π 4 = 1 ⇒ A = 4 b b π \int_{-∞}^{+∞}f(x)=1\\ x\leq 0\quad F(x)=\int_{-∞}^{x}f(x)=\int_{-∞}^{x}0dx=0\\ x> 0\quad F(x)=\int_{-∞}^{0}f(x)+\int_{0}^{+∞}f(x)\\ =0+\int_{0}^{+∞}Ax^2e^{-\frac{x^2}{b}}\\ =\int_{0}^{+∞}-\frac{Ab}{2}xde^{-\frac{x^2}{b}}\\ =-\frac{Ab}{2}xe^{-\frac{x^2}{b}}|_{0}^{+∞}+\frac{Ab}{2}\int_{0}^{+∞}e^{-\frac{x^2}{b}}dx \\ =\frac{Ab\sqrt{b}}{2}\int_{0}^{+∞}e^{-u^2}du=\frac{Ab\sqrt{b\pi}}{4}=1 \\\Rightarrow A=\frac {4}{b\sqrt{b\pi}} +f(x)=1x0F(x)=xf(x)=x0dx=0x>0F(x)=0f(x)+0+f(x)=0+0+Ax2ebx2=0+2Abxdebx2=2Abxebx20++2Ab0+ebx2dx=2Abb 0+eu2du=4Abbπ =1A=bbπ 4

23

x ≤ 1000 F ( x ) = ∫ − ∞ x f ( x ) = ∫ − ∞ x 0 d x = 0 x > 1000 F ( x ) = ∫ − ∞ 1000 f ( x ) + ∫ 1000 x f ( x ) = 0 − 1000 x | 1000 x = − 1000 x + 1 x\leq 1000\quad F(x)=\int_{-∞}^{x}f(x)=\int_{-∞}^{x}0dx=0\\ x> 1000\quad F(x)=\int_{-∞}^{1000}f(x)+\int_{1000}^{x}f(x)\\ =0-\frac{1000}{x}|_{1000}^{x}=-\frac{1000}{x}+1 x1000F(x)=xf(x)=x0dx=0x>1000F(x)=1000f(x)+1000xf(x)=0x10001000x=x1000+1

一只器件寿命大于 1500 h 1500h 1500h的概率是 p = 1 3 p=\frac{1}{3} p=31
P { x ≥ 2 } = 1 − C 5 1 ( 1 − p ) 4 p − ( 1 − p ) 5 = 232 243 P\{x\geq 2\}=1-C_{5}^{1}(1-p)^4p-(1-p)^5=\frac{232}{243} P{x2}=1C51(1p)4p(1p)5=243232

在这里插入图片描述

24

x < 0     ∫ − ∞ x f ( x ) d x = 0 x > 0    ∫ − ∞ 0 f ( x ) d x + ∫ 0 x f ( x ) d x = 1 − e − x 5 p ( x > 10 ) = 1 − p ( x ≤ 10 ) = 1 − ( 1 − e − 2 ) = e − 2 p ( Y = k ) = C 5 k e − 2 k ( 1 − e − 2 ) 5 − k x<0 \ \ \ \int_{-∞}^{x}f(x)dx=0 \\x>0 \ \ \int_{-∞}^{0}f(x)dx+\int_{0}^{x}f(x)dx=1-e^{-\frac{x}{5}}\\ p(x>10)=1-p(x\leq 10) =1-(1-e^{-2})=e^{-2}\\ p(Y=k)=C_{5}^{k}e^{-2k}(1-e^{-2})^{5-k} x<0   xf(x)dx=0x>0  0f(x)dx+0xf(x)dx=1e5xp(x>10)=1p(x10)=1(1e2)=e2p(Y=k)=C5ke2k(1e2)5k

p ( Y ≥ 1 ) = 1 − ( 1 − e − 2 ) 5 = 0.516 p(Y\geq 1)=1-(1-e^{-2})^5=0.516 p(Y1)=1(1e2)5=0.516

在这里插入图片描述

27

在这里插入图片描述

在这里插入图片描述

31

A A A为指示灯亮绿灯的概率 P ( A ) = 0.2 P(A)=0.2 P(A)=0.2,则
F ( x ) = { 0 , x ≤ 0 0.2 + 0.8 x , 0 < x ≤ 30 1 , o t h e r w i s e F(x)=\left\{\begin{aligned} 0,\quad\quad \quad \quad \quad \quad x\leq 0\\ 0.2+\frac{0.8}{x},0<x\leq 30\\ 1 \quad \quad \quad \quad ,otherwise \end{aligned}\right. F(x)=0,x00.2+x0.8,0<x301,otherwise

X X X不是连续型随机变量, F ( x ) F(x) F(x) x = 0 x=0 x=0点不连续,且不存在一点集,是 F ( x ) F(x) F(x)在这个点集上取值的概率为1,即已不是离散型随机变量。

相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页