帕斯卡分布/负二项分布

帕斯卡分布

负二项分布的正整数形式,描述第n次成功发生在第x次的概率

定义

在重复、独立的伯努利试验,设每次试验成功的概率为 p p p,失败的概率为 q = 1 − p q= 1- p q=1p,若将试验进行到出现 r r r ( r r r 为常数 ) 次成功为止,以随机变量 X X X表示所需试验次数,则 X是离散型随机变量,其概率分布为:
P ( X = k ) = C k − 1 r − 1 p r q k − r k = r , r + 1 , . . . P(X=k)=C^{r-1}_{k-1}p^rq^{k-r}\quad k=r,r+1,... P(X=k)=Ck1r1prqkrk=r,r+1,...
在这里插入图片描述

r ∈ Z r\in Z rZ时,负二项分布又称帕斯卡分布

r = 1 r=1 r=1 时,负二项分布等于几何分布

若随机变量 X X X服从参数为 r r r p p p的负二项分布,则记为 X ∼ N B ( r , p ) X\sim NB(r,p) XNB(r,p)

相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页