本题实现类的额继承和派生。已经给出相关的数据结构和类的声明,要求实现类的相关函数,为保证比较的结果,所有的数据均以int类型(除了PI取3.14外),程序运行时,输入一个点p的坐标x和y,接着是三角形的三个顶点,程序运行显示三角形的面积和周长,以及p是否位于三角形内。
函数接口定义:
在这里给出了数据结构和类的声明,以及一个全局函数的声明:
#include <iostream>
#include <math.h>
using namespace std;
const double PI = 3.14;
struct Point{//点的定义
int x,y;
};
int distance(Point p1,Point p2);//计算两个点之间的距离
class Shape
{
public:
int area(){return 0;}//计算图形面积
int length(){return 0;}//计算图形的周长
void show(){}//显示相关信息
bool IsInside(Point p){return false;}//点p是否位于图形内,如果是,返回true
};
class TriAngle:public Shape{
Point a,b,c;//三角形的三个顶点
public:
TriAngle(Point,Point,Point);
int area();
int length();
void show();
bool IsInside(Point p);
};
裁判测试程序样例:
在这里给出函数被调用进行测试的例子。例如:
int main()
{
Point p;
cin>>p.x>>p.y;
cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y;
TriAngle tri(a,b,c);
tri.show();
if(tri.IsInside(p))
cout<<"p inside triangle"<<endl;
else
cout<<"p not inside triangle"<<endl;
return 0;
}
/* 请在这里填写答案 */
***************************************************************************
问题:如何判断点是否在三角形内?
答:将点p与点a,b,c相连,划分出的三个小三角形,三个小三角形的面积之和如果等于三角形面积,即点在三角形内。
*************************************************************************************
问题:如何计算三角形面积?
答:假设三角形三条边长分别为a、b、c
,其中半周长s=(a+b+c)/2;
则面积为:
代码实现:
double stance(Point p1, Point p2)
{
double x = (p1.x - p2.x) * (p1.x - p2.x);
double y = (p1.y - p2.y) * (p1.y - p2.y);
return sqrt(x + y);
}
double area(Point x,Point y,Point z)
{
double a = distance(x, y);
double b = distance(x, z);
double c = distance(y, z);
double s = (a + b + c) / 2.0;
double area= sqrt(s*(s- a) * (s - b) * (s - c));
return area;
}