带时滞传染病模型分析【基于matlab的动力学模型学习笔记_4】

本文通过一个带时滞的SIR模型,探讨了时滞在传染病动力学模型中的影响。利用MATLAB进行模型搭建,通过正平衡点的求取、雅可比矩阵、特征方程以及劳斯-赫尔维茨稳定性判据,分析了系统稳定性。
摘要由CSDN通过智能技术生成

/*仅当作学习笔记,若有纰漏欢迎友好交流指正,此外若能提供一点帮助将会十分荣幸*/

在前面的博文中我们提到了几种病毒模型、基本再生数R0等,这里我们将研究带时滞的动力学模型。

摘 要:很多病毒模型因为传染病潜伏期的原因,各种状况之间的转化并不是立刻完成的,而是有存在一个时间差(时滞)。本文将通过一个带时滞的SIR模型,展现带时滞病毒模型的分析方法。

0 搭建模型

在经典SIR模型中,S代表易感状态(也可以理解为未被感染的健康群体),I代表已经被感染的群体,而R代表处于免疫状态的群体(由感染个体I治愈而来的,且假设其治愈后不会再会被感染)。易感个体S有一定几率转化为感染个体I,而感染个体I也有一定几率β变为免疫个体R。SIR模型表达式为:

在SIR模型基础上,为了能够充分展现稳定性计算过程中可能会遇到的问题及对应解决方式,我们将构建一个相对复杂的SLA模型(也就是在SIR模型基础上增加条件因素构造而来的)。

 S、L、A分别对应SIR模型中的S、I、R状态,而u1、u2分别代表易感染期和潜伏期病毒的增长率,β1、β2分别代表潜伏期和活跃期的被感染概率,δ为易感染期、潜伏期、活跃期为节点在网络中减少消失的概率,α、γ为状态转移率。 

在上述模型的基础上,为了增加时滞因素,我们在活跃状态A(t)向易感染状态S(t)转移时加入一个时滞,转移量为γA(t-),其对应模型为:

 实际意义就是遭受到网络病毒侵害的个体恢复到正常状态所需要的时间,也就是接受修复变为易受感染的正常个体时所需要的时间。

1 正平衡点E*的求取

在分析研究一个系统的稳定性时,找到该系统的正平衡点是相当重要的,因为在正平衡点处,系统达到一个临界稳定状态,系统的发展前景也来到了一个十字路口,发散、收敛稳定、周期变换、混沌等等情况都有可能在次之后发生。

1.1初始条件获取

对于一个系统而言,只有在初始条件给定的情况下,才可能继续运算求取其他值。

初始条件1:

对于本文模型,由于为正向系统,易感染期、潜伏期和活跃期的值都不可能为负值ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值