范数 norm(未完待续)

对于一个 n n n 维向量,其范数 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ 满足:

  1. ∣ ∣ x ∣ ∣ ≥ 0 ||x||\geq 0 ∣∣x∣∣0, iff x = 0 x=0 x=0 时, ∣ ∣ x ∣ ∣ = 0 ||x||= 0 ∣∣x∣∣=0 (非负性)
  2. ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x||+||y|| ∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣(三角不等式)
  3. ∣ ∣ α x ∣ ∣ = ∣ α ∣   ∣ ∣ x ∣ ∣ ||\alpha x||=|\alpha|\, ||x|| ∣∣αx∣∣=α∣∣x∣∣(齐次性)

下面是向量 p p p 范数的定义:

∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p ||x||_p=(\sum_{i=1}^n |x_i|^p)^{1/p} ∣∣xp=(i=1nxip)1/p,其中 1 ≤ p < ∞ 1\leq p<\infty 1p<

常用向量范数:

  1. ∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + … ∣ x n ∣ ||x||_1=|x_1|+|x_2|+\dots |x_n| ∣∣x1=x1+x2+xn
  2. ∣ ∣ x ∣ ∣ 2 = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + … ∣ x n ∣ 2 ||x||_2=\sqrt{|x_1|^2+|x_2|^2+\dots |x_n|^2} ∣∣x2=x12+x22+xn2
  3. ∣ ∣ x ∣ ∣ ∞ = max ⁡ i ∣ x i ∣ ||x||_\infty=\max \limits_{i}|x_i| ∣∣x=imaxxi

三者之间有如下关系
∣ ∣ x ∣ ∣ 1 ≥ ∣ ∣ x ∣ ∣ 2 ≥ ∣ ∣ x ∣ ∣ ∞ ∥ x ∥ 2 ≤ ∥ x ∥ 1 ≤ n ∥ x ∥ 2 ∥ x ∥ ∞ ⩽ ∥ x ∥ 2 ⩽ n ∥ x ∥ ∞ ∥ x ∥ ∞ ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ \begin{equation}\begin{split} &||x||_1 \geq ||x||_2 \geq ||x||_\infty\\ & \|x\|_2 \leq \|x\|_1 \leq \sqrt n \|x\|_2\\ &\|x\|_\infty\leqslant\|x\|_2\leqslant\sqrt n \|x\|_\infty\\ & \|x\|_\infty\leqslant\|x\|_1\leqslant n \|x\|_\infty \end{split}\end{equation} ∣∣x1∣∣x2∣∣xx2x1n x2xx2n xxx1nx

证明:分别对三种范数平方易得。

:对任意两种范数( p , q p,q p,q),存在 c 1 > 0 , c 2 > 0 c_1>0, c_2>0 c1>0,c2>0, 使得下式成立:
c 1 ∥ ⋅ ∥ p ≤ ∥ ⋅ ∥ q ≤ c 2 ∥ ⋅ ∥ p c_1\|\cdot\|_p \leq \|\cdot\|_q \leq c_2\|\cdot\|_p c1pqc2p
称为范数的相容性.

矩阵 A ∈ R m × n A\in R^{m\times n} ARm×n p p p 范数(由向量诱导的算子范数):

∣ ∣ A ∣ ∣ p = sup ⁡ x ≠ 0 ∣ ∣ A x ∣ ∣ p ∣ ∣ x ∣ ∣ p = max ⁡ ∣ ∣ x ∣ ∣ p = 1 ∣ ∣ A x ∣ ∣ p ||A||_p=\sup\limits_{x\neq0}\frac{||Ax||_p}{||x||_p}=\max\limits_{||x||_p=1}||Ax||_p ∣∣Ap=x=0sup∣∣xp∣∣Axp=∣∣xp=1max∣∣Axp

常用矩阵范数:

  1. ∣ ∣ A ∣ ∣ 1 = max ⁡ j ∑ i = 1 m ∣ a i j ∣ ||A||_1=\max\limits_j \sum\limits_{i=1}^m |a_{ij}| ∣∣A1=jmaxi=1maij,(最大和)
  2. ∣ ∣ A ∣ ∣ 2 = λ max ⁡ ( A T A ) = λ max ⁡ ( A A T ) ||A||_2=\sqrt{\lambda_{\max}(A^T A)}=\sqrt{\lambda_{\max}(A A^T)} ∣∣A2=λmax(ATA) =λmax(AAT) ( A A A最大奇异值,当 A A A 为对称正定矩阵时就等于 A A A 的最大特征值)
  3. ∣ ∣ A ∣ ∣ ∞ = max ⁡ i ∑ j = 1 m ∣ a i j ∣ ||A||_\infty=\max\limits_i \sum\limits_{j=1}^m |a_{ij}| ∣∣A=imaxj=1maij,(最大和)

性质: ∣ ∣ A B ∣ ∣ p ≤ ∣ ∣ A ∣ ∣ p ∣ ∣ B ∣ ∣ p ||AB||_p\leq||A||_p||B||_p ∣∣ABp∣∣Ap∣∣Bp

注:向量也是特殊的矩阵,所以当矩阵退化为 n n n 维向量时,向量范数和矩阵范数等价

问:如果按照矩阵的算子范数,行向量和列向量的范数相同吗?

谱半径(A的最大特征值的模)不大于A的任意范数
A x = λ x Ax=\lambda x Ax=λx两边取范数得

补充《控制论中的矩阵计算》——徐树方 相关知识

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值