对于一个 n n n 维向量,其范数 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ 满足:
- ∣ ∣ x ∣ ∣ ≥ 0 ||x||\geq 0 ∣∣x∣∣≥0, iff x = 0 x=0 x=0 时, ∣ ∣ x ∣ ∣ = 0 ||x||= 0 ∣∣x∣∣=0 (非负性)
- ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x||+||y|| ∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣(三角不等式)
- ∣ ∣ α x ∣ ∣ = ∣ α ∣ ∣ ∣ x ∣ ∣ ||\alpha x||=|\alpha|\, ||x|| ∣∣αx∣∣=∣α∣∣∣x∣∣(齐次性)
下面是向量 p p p 范数的定义:
∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p ||x||_p=(\sum_{i=1}^n |x_i|^p)^{1/p} ∣∣x∣∣p=(∑i=1n∣xi∣p)1/p,其中 1 ≤ p < ∞ 1\leq p<\infty 1≤p<∞
常用向量范数:
- ∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + … ∣ x n ∣ ||x||_1=|x_1|+|x_2|+\dots |x_n| ∣∣x∣∣1=∣x1∣+∣x2∣+…∣xn∣
- ∣ ∣ x ∣ ∣ 2 = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + … ∣ x n ∣ 2 ||x||_2=\sqrt{|x_1|^2+|x_2|^2+\dots |x_n|^2} ∣∣x∣∣2=∣x1∣2+∣x2∣2+…∣xn∣2
- ∣ ∣ x ∣ ∣ ∞ = max i ∣ x i ∣ ||x||_\infty=\max \limits_{i}|x_i| ∣∣x∣∣∞=imax∣xi∣
三者之间有如下关系
∣
∣
x
∣
∣
1
≥
∣
∣
x
∣
∣
2
≥
∣
∣
x
∣
∣
∞
∥
x
∥
2
≤
∥
x
∥
1
≤
n
∥
x
∥
2
∥
x
∥
∞
⩽
∥
x
∥
2
⩽
n
∥
x
∥
∞
∥
x
∥
∞
⩽
∥
x
∥
1
⩽
n
∥
x
∥
∞
\begin{equation}\begin{split} &||x||_1 \geq ||x||_2 \geq ||x||_\infty\\ & \|x\|_2 \leq \|x\|_1 \leq \sqrt n \|x\|_2\\ &\|x\|_\infty\leqslant\|x\|_2\leqslant\sqrt n \|x\|_\infty\\ & \|x\|_\infty\leqslant\|x\|_1\leqslant n \|x\|_\infty \end{split}\end{equation}
∣∣x∣∣1≥∣∣x∣∣2≥∣∣x∣∣∞∥x∥2≤∥x∥1≤n∥x∥2∥x∥∞⩽∥x∥2⩽n∥x∥∞∥x∥∞⩽∥x∥1⩽n∥x∥∞
证明:分别对三种范数平方易得。
注:对任意两种范数(
p
,
q
p,q
p,q),存在
c
1
>
0
,
c
2
>
0
c_1>0, c_2>0
c1>0,c2>0, 使得下式成立:
c
1
∥
⋅
∥
p
≤
∥
⋅
∥
q
≤
c
2
∥
⋅
∥
p
c_1\|\cdot\|_p \leq \|\cdot\|_q \leq c_2\|\cdot\|_p
c1∥⋅∥p≤∥⋅∥q≤c2∥⋅∥p
称为范数的相容性.
矩阵 A ∈ R m × n A\in R^{m\times n} A∈Rm×n 的 p p p 范数(由向量诱导的算子范数):
∣ ∣ A ∣ ∣ p = sup x ≠ 0 ∣ ∣ A x ∣ ∣ p ∣ ∣ x ∣ ∣ p = max ∣ ∣ x ∣ ∣ p = 1 ∣ ∣ A x ∣ ∣ p ||A||_p=\sup\limits_{x\neq0}\frac{||Ax||_p}{||x||_p}=\max\limits_{||x||_p=1}||Ax||_p ∣∣A∣∣p=x=0sup∣∣x∣∣p∣∣Ax∣∣p=∣∣x∣∣p=1max∣∣Ax∣∣p
常用矩阵范数:
- ∣ ∣ A ∣ ∣ 1 = max j ∑ i = 1 m ∣ a i j ∣ ||A||_1=\max\limits_j \sum\limits_{i=1}^m |a_{ij}| ∣∣A∣∣1=jmaxi=1∑m∣aij∣,(最大列和)
- ∣ ∣ A ∣ ∣ 2 = λ max ( A T A ) = λ max ( A A T ) ||A||_2=\sqrt{\lambda_{\max}(A^T A)}=\sqrt{\lambda_{\max}(A A^T)} ∣∣A∣∣2=λmax(ATA)=λmax(AAT) ( A A A 的最大奇异值,当 A A A 为对称正定矩阵时就等于 A A A 的最大特征值)
- ∣ ∣ A ∣ ∣ ∞ = max i ∑ j = 1 m ∣ a i j ∣ ||A||_\infty=\max\limits_i \sum\limits_{j=1}^m |a_{ij}| ∣∣A∣∣∞=imaxj=1∑m∣aij∣,(最大行和)
性质: ∣ ∣ A B ∣ ∣ p ≤ ∣ ∣ A ∣ ∣ p ∣ ∣ B ∣ ∣ p ||AB||_p\leq||A||_p||B||_p ∣∣AB∣∣p≤∣∣A∣∣p∣∣B∣∣p
注:向量也是特殊的矩阵,所以当矩阵退化为 n n n 维向量时,向量范数和矩阵范数等价
问:如果按照矩阵的算子范数,行向量和列向量的范数相同吗?
谱半径(A的最大特征值的模)不大于A的任意范数
由
A
x
=
λ
x
Ax=\lambda x
Ax=λx两边取范数得
补充《控制论中的矩阵计算》——徐树方 相关知识