自治系统和非自治系统 (Autonomous and non-autonomous system)

本文讨论了自治系统(时不变系统)与非自治系统(时变系统)的区别,基于微分方程的描述。自治系统中函数不显式依赖时间,如线性和非线性系统的例子。非自治系统则函数显式包含时间。受控系统的分类依据输入是否直接依赖于时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自治 在不同领域有不同的释义,此处主要指用数学微分方程描述的系统,如控制和物理系统。

如果一个系统具有如下形式,称为 自治系统 或者 时不变系统:
x ˙ = f ( x ) \begin{equation} \dot x= f(x) \end{equation} x˙=f(x)

其特点是 f f f 显式依赖于 t t t

:函数 f f f 不显式依赖于 t t t ,并不是说系统和时间无关。动态系统的轨迹 x ( t ) x(t) x(t) 是随着时间演化的,时间依然是系统的自变量,但是系统在某点的变化率 f ( x ) f(x) f(x) 和该系统运行在哪个时刻无关,只与系统当时的状态有关。

例如

x ˙ ( t ) = A x ( t ) \dot x(t)=Ax(t) x˙(t)=Ax(t)

是线性自治(时不变)系统,其中 A A A 是常矩阵, x x x 是关于 t t t 的函数,但是 f f f 不显式依赖于 t t t

x ˙ ( t ) = x ( t ) + s i n ( x ( t ) ) \dot x(t) = x(t)+sin(x(t)) x˙(t)=x(t)+sin(x(t))

是非线性自治(时不变)系统。


反之称为非自治系统或时变系统
x ˙ = f ( t , x ) \begin{equation} \dot x = f(\red t,x) \end{equation} x˙=f(t,x)

其中函数 f f f 显式依赖于 t t t

例如

x ˙ ( t ) = A ( t ) x ( t ) \dot x(t) = A(\red t)x(t) x˙(t)=A(t)x(t) 是线性非自治(时变)系统
x ˙ ( t ) = x ( t ) + sin ⁡ t \dot x(t) = x(t)+ \sin \red t x˙(t)=x(t)+sint 是非线性非自治(时变)系统


注:一个误区,系统是自治还是非自治并不能根据系统有输入或者无输入来判断。

如果受控系统 x ˙ = f ( x , u ) \dot x=f(x,u) x˙=f(x,u) 的输入 u = g ( x ) u=g(x) u=g(x) 只是关于状态的函数,那么受控系统是自治的;
如果受控系统 x ˙ = f ( x , u ) \dot x=f(x,u) x˙=f(x,u)的输入 u = g ( x , t ) u=g(x,t) u=g(x,t) 是显式依赖于时间的,那么受控系统是非自治的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值