度量(距离)(metric)、范数(norm)和内积(inner product)

度量(距离)(metric)、范数(norm)和内积(inner product)

许多时候,经常用到这三个概念,现整理在此,以便日后快速查阅。

一、距离

度量(或距离)是用来定义两个点(或向量)之间的距离的一个函数。

  • 定义:给定一个集合 X X X,一个度量 d : X × X → R d: X \times X \to \mathbb{R} d:X×XR 是一个函数,它满足以下三个条件:
  1. 非负性 d ( x , y ) ≥ 0 d(x, y) \geq 0 d(x,y)0,且 d ( x , y ) = 0    ⟺    x = y d(x, y) = 0 \iff x = y d(x,y)=0x=y
  2. 对称性 d ( x , y ) = d ( y , x ) d(x, y) = d(y, x) d(x,y)=d(y,x)
  3. 三角不等式 d ( x , z ) ≤ d ( x , y ) + d ( y , z ) d(x, z) \leq d(x, y) + d(y, z) d(x,z)d(x,y)+d(y,z) 对所有 x , y , z ∈ X x, y, z \in X x,y,zX 成立。

欧氏距离:最常见的距离度量是欧氏距离,它在 R n \mathbb{R}^n Rn 中定义为:

d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

这是我们通常在几何空间中理解的直线距离。

二、 范数

范数是定义在向量空间上的一个函数,它可以理解为描述向量的“大小”或“长度”。通过范数,可以定义向量空间中的度量(距离)。

  • 定义:给定一个向量空间 V V V,一个函数 ∥ ⋅ ∥ : V → R \| \cdot \|: V \to \mathbb{R} :VR是一个范数,如果它满足以下条件:

    1. 非负性 ∥ x ∥ ≥ 0 \|x\| \geq 0 x0 ∥ x ∥ = 0    ⟺    x = 0 \|x\| = 0 \iff x = 0 x=0x=0
    2. 齐次性 ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \|\alpha x\| = |\alpha| \|x\| αx=α∣∥x 对任意标量 α \alpha α 和向量 x x x
    3. 三角不等式 ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x + y\| \leq \|x\| + \|y\| x+yx+y对所有 x , y ∈ V x, y \in V x,yV
  • 常见的范数

    1. L ₂ L_₂ L范数(欧氏范数):在欧几里得空间 R n \mathbb{R}^n Rn 中, L ₂ L_₂ L范数是:

      ∥ x ∥ 2 = ( ∑ i = 1 n ∣ x i ∣ 2 ) 1 / 2 \|x\|_2 = \left( \sum_{i=1}^n |x_i|^2 \right)^{1/2} x2=(i=1nxi2)1/2

      这是最常用的范数,表示向量的长度。

    2. L ₁ L_₁ L范数:定义为向量分量绝对值的和:

      ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \|x\|_1 = \sum_{i=1}^n |x_i| x1=i=1nxi

      这是在信号处理和优化问题中常用的一种范数。

    3. L ∞ L_\infty L范数(最大范数):定义为向量分量的最大绝对值:

      ∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \|x\|_\infty = \max\limits_{i} |x_i| x=imaxxi

      这是在某些最坏情况分析中使用的范数。

  • 范数与度量的关系:通过范数,我们可以定义向量之间的距离。对于向量 x , y ∈ V x, y \in V x,yV,我们可以通过范数定义距离:

    d ( x , y ) = ∥ x − y ∥ d(x, y) = \|x - y\| d(x,y)=xy

    因此,范数空间总是一个度量空间

三、 内积

内积是向量空间中的一种代数结构,它通过定义向量的乘积来度量两个向量之间的相似性(如方向上的相互关系)。内积还可以用来定义范数。

  • 定义:在向量空间 V V V 中,一个内积是一个函数 ⟨ ⋅ , ⋅ ⟩ : V × V → R \langle \cdot, \cdot \rangle : V \times V \to \mathbb{R} ,:V×VR,满足以下条件:

    1. 对称性 ⟨ x , y ⟩ = ⟨ y , x ⟩ \langle x, y \rangle = \langle y, x \rangle x,y=y,x(对于复数内积,满足共轭对称性: ⟨ x , y ⟩ = ⟨ y , x ⟩ ‾ \langle x, y \rangle = \overline{\langle y, x \rangle} x,y=y,x);
    2. 线性性 ⟨ α x + β y , z ⟩ = α ⟨ x , z ⟩ + β ⟨ y , z ⟩ \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle αx+βy,z=αx,z+βy,z对任意标量 α 、 β \alpha、\beta αβ;(对第一变元)
    3. 正定性 ⟨ x , x ⟩ ≥ 0 \langle x, x \rangle \geq 0 x,x0,且 ⟨ x , x ⟩ = 0    ⟺    x = 0 \langle x, x \rangle = 0 \iff x = 0 x,x=0x=0
  • 常见的内积: 在 R n \mathbb{R}^n Rn 中,标准的欧氏内积定义为:

    ⟨ x , y ⟩ = ∑ i = 1 n x i y i \langle x, y \rangle = \sum_{i=1}^n x_i y_i x,y=i=1nxiyi

    对于复数空间,复数内积的定义则是:

    ⟨ x , y ⟩ = ∑ i = 1 n x i y i ‾ \langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} x,y=i=1nxiyi

  • 内积与范数的关系:内积可以用来定义范数。通过内积,向量 x x x 的范数定义为:

    ∥ x ∥ = ⟨ x , x ⟩ \|x\| = \sqrt{\langle x, x \rangle} x=x,x

    因此,内积空间总是一个度量空间

总结:内积可以诱导范数,范数可以诱导度量,所以内积也可以诱导度量。

内积
范数
度量
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值