度量(距离)(metric)、范数(norm)和内积(inner product)
许多时候,经常用到这三个概念,现整理在此,以便日后快速查阅。
一、距离
度量(或距离)是用来定义两个点(或向量)之间的距离的一个函数。
- 定义:给定一个集合 X X X,一个度量 d : X × X → R d: X \times X \to \mathbb{R} d:X×X→R 是一个函数,它满足以下三个条件:
- 非负性: d ( x , y ) ≥ 0 d(x, y) \geq 0 d(x,y)≥0,且 d ( x , y ) = 0 ⟺ x = y d(x, y) = 0 \iff x = y d(x,y)=0⟺x=y;
- 对称性: d ( x , y ) = d ( y , x ) d(x, y) = d(y, x) d(x,y)=d(y,x);
- 三角不等式: d ( x , z ) ≤ d ( x , y ) + d ( y , z ) d(x, z) \leq d(x, y) + d(y, z) d(x,z)≤d(x,y)+d(y,z) 对所有 x , y , z ∈ X x, y, z \in X x,y,z∈X 成立。
欧氏距离:最常见的距离度量是欧氏距离,它在 R n \mathbb{R}^n Rn 中定义为:
d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} d(x,y)=∑i=1n(xi−yi)2
这是我们通常在几何空间中理解的直线距离。
二、 范数
范数是定义在向量空间上的一个函数,它可以理解为描述向量的“大小”或“长度”。通过范数,可以定义向量空间中的度量(距离)。
-
定义:给定一个向量空间 V V V,一个函数 ∥ ⋅ ∥ : V → R \| \cdot \|: V \to \mathbb{R} ∥⋅∥:V→R是一个范数,如果它满足以下条件:
- 非负性: ∥ x ∥ ≥ 0 \|x\| \geq 0 ∥x∥≥0 且 ∥ x ∥ = 0 ⟺ x = 0 \|x\| = 0 \iff x = 0 ∥x∥=0⟺x=0;
- 齐次性: ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \|\alpha x\| = |\alpha| \|x\| ∥αx∥=∣α∣∥x∥ 对任意标量 α \alpha α 和向量 x x x;
- 三角不等式: ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x + y\| \leq \|x\| + \|y\| ∥x+y∥≤∥x∥+∥y∥对所有 x , y ∈ V x, y \in V x,y∈V。
-
常见的范数:
-
L ₂ L_₂ L₂范数(欧氏范数):在欧几里得空间 R n \mathbb{R}^n Rn 中, L ₂ L_₂ L₂范数是:
∥ x ∥ 2 = ( ∑ i = 1 n ∣ x i ∣ 2 ) 1 / 2 \|x\|_2 = \left( \sum_{i=1}^n |x_i|^2 \right)^{1/2} ∥x∥2=(∑i=1n∣xi∣2)1/2
这是最常用的范数,表示向量的长度。
-
L ₁ L_₁ L₁范数:定义为向量分量绝对值的和:
∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \|x\|_1 = \sum_{i=1}^n |x_i| ∥x∥1=∑i=1n∣xi∣
这是在信号处理和优化问题中常用的一种范数。
-
L ∞ L_\infty L∞范数(最大范数):定义为向量分量的最大绝对值:
∥ x ∥ ∞ = max i ∣ x i ∣ \|x\|_\infty = \max\limits_{i} |x_i| ∥x∥∞=imax∣xi∣
这是在某些最坏情况分析中使用的范数。
-
-
范数与度量的关系:通过范数,我们可以定义向量之间的距离。对于向量 x , y ∈ V x, y \in V x,y∈V,我们可以通过范数定义距离:
d ( x , y ) = ∥ x − y ∥ d(x, y) = \|x - y\| d(x,y)=∥x−y∥
因此,范数空间总是一个度量空间。
三、 内积
内积是向量空间中的一种代数结构,它通过定义向量的乘积来度量两个向量之间的相似性(如方向上的相互关系)。内积还可以用来定义范数。
-
定义:在向量空间 V V V 中,一个内积是一个函数 ⟨ ⋅ , ⋅ ⟩ : V × V → R \langle \cdot, \cdot \rangle : V \times V \to \mathbb{R} ⟨⋅,⋅⟩:V×V→R,满足以下条件:
- 对称性: ⟨ x , y ⟩ = ⟨ y , x ⟩ \langle x, y \rangle = \langle y, x \rangle ⟨x,y⟩=⟨y,x⟩(对于复数内积,满足共轭对称性: ⟨ x , y ⟩ = ⟨ y , x ⟩ ‾ \langle x, y \rangle = \overline{\langle y, x \rangle} ⟨x,y⟩=⟨y,x⟩);
- 线性性: ⟨ α x + β y , z ⟩ = α ⟨ x , z ⟩ + β ⟨ y , z ⟩ \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle ⟨αx+βy,z⟩=α⟨x,z⟩+β⟨y,z⟩对任意标量 α 、 β \alpha、\beta α、β;(对第一变元)
- 正定性: ⟨ x , x ⟩ ≥ 0 \langle x, x \rangle \geq 0 ⟨x,x⟩≥0,且 ⟨ x , x ⟩ = 0 ⟺ x = 0 \langle x, x \rangle = 0 \iff x = 0 ⟨x,x⟩=0⟺x=0。
-
常见的内积: 在 R n \mathbb{R}^n Rn 中,标准的欧氏内积定义为:
⟨ x , y ⟩ = ∑ i = 1 n x i y i \langle x, y \rangle = \sum_{i=1}^n x_i y_i ⟨x,y⟩=∑i=1nxiyi
对于复数空间,复数内积的定义则是:
⟨ x , y ⟩ = ∑ i = 1 n x i y i ‾ \langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} ⟨x,y⟩=∑i=1nxiyi
-
内积与范数的关系:内积可以用来定义范数。通过内积,向量 x x x 的范数定义为:
∥ x ∥ = ⟨ x , x ⟩ \|x\| = \sqrt{\langle x, x \rangle} ∥x∥=⟨x,x⟩
因此,内积空间总是一个度量空间。
总结:内积可以诱导范数,范数可以诱导度量,所以内积也可以诱导度量。