矩阵的对角化与SVD分解

矩阵的对角化

对于对称矩阵B,存在单位正交阵P(PT=P-1),使得:
B = P-1AP
其中A为对角矩阵,P为单位正交阵。对于一般的方阵而言,不一定能对角化,对于对称矩阵而言,必能对角化,而且对于正定矩阵 λ \lambda λi>0。
设A= [ λ 1 λ 2 λ n ] \left[\begin{matrix} \lambda_1& &\\&\lambda_2&\\&&\lambda_n \end{matrix}\right] λ1λ2λn,PT= ( u 1 , u 2 , u n ) (u_1, u_2, u_n) (u1,u2,un)

B= [ u 1 u 2 u n ] [ λ 1 λ 2 λ n ] [ u 1 u 2 u n ] \left[\begin{matrix} u_1\\u_2\\u_n \end{matrix}\right]\left[\begin{matrix} \lambda_1& &\\&\lambda_2&\\&&\lambda_n \end{matrix}\right]\left[\begin{matrix} u_1&u_2&u_n \end{matrix}\right] u1u2unλ1λ2λn[u1u2un]

= λ 1 u 1 u 1 T + λ 2 u 2 u 2 2 + . . . + λ n u n u n T \lambda_1u_1u_1^T+\lambda_2u_2u_2^2+...+\lambda_nu_nu_n^T λ1u1u1T+λ2u2u22+...+λnununT
现假设 λ 1 > λ 2 > . . . > λ n \lambda_1>\lambda_2>...>\lambda_ n λ1>λ2>...>λn,则可以取前面几个占比重比较大的特征值,来实现矩阵的压缩。

矩阵的SVD分解

对于任意矩阵 A m × n A_{m\times n} Am×n A T A A^TA ATA满足对称半正定性,则有 A T A = P T D P A^TA=P^TDP ATA=PTDP
已有结论:对于矩阵 A B AB AB和矩阵 B A BA BA,它们不为 0 0 0的特征值必相等。
可由换位公式 ∣ λ I − A B ∣ = λ m − n ∣ λ I − B A ∣ |\lambda I-AB|=\lambda^{m-n} |\lambda I-BA| λIAB=λmnλIBA 证明。
A T A A^TA ATA的特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn,则
A m × n = V m × m T [ λ 1 λ 2 λ n ] U n × n A_{m\times n}=V_{m\times m}^T\left[\begin{matrix} \sqrt\lambda_1& &\\&\sqrt\lambda_2&\\&&\sqrt\lambda_n \end{matrix}\right]U_{n\times n} Am×n=Vm×mTλ 1λ 2λ nUn×n

其中 U n × n U_{n\times n} Un×n为特征值所对应的特征向量(正交基),所以
V n × n T = A m × n U n × n [ 1 / λ 1 1 / λ 2 1 / λ n ] V_{n\times n}^T = A_{m\times n}U_{n\times n}\left[\begin{matrix} 1/\sqrt\lambda_1& &\\&1/\sqrt\lambda_2&\\&&1/\sqrt\lambda_n \end{matrix}\right] Vn×nT=Am×nUn×n1/λ 11/λ 21/λ n

V n × n T = [ v 1 v 2 . . . v n ] , U n × n T = [ u 1 u 2 . . . u n ] V_{n\times n}^T=\left[\begin{matrix} v_1&v_2&...&v_n \end{matrix}\right],U_{n\times n}^T=\left[\begin{matrix} u_1&u_2&...&u_n \end{matrix}\right] Vn×nT=[v1v2...vn],Un×nT=[u1u2...un]

则有 A m × n = λ 1 v 1 u 1 T + λ 2 v 2 u 2 T + . . . + λ n v n u n T A_{m\times n}=\sqrt\lambda_1v_1u_1^T+\sqrt\lambda_2v_2u_2^T+...+\sqrt\lambda_nv_nu_n^T Am×n=λ 1v1u1T+λ 2v2u2T+...+λ nvnunT
可应用于图像压缩和减少矩阵运算。
例如:图像压缩存储最小需要 m + n + 1 m+n+1 m+n+1(第一项)
当压缩存储量为 ( m + n + 1 ) ∗ K (m+n+1)*K (m+n+1)K时,误差为:
e r r o r = 1 − ∑ i = 1 k λ i ∑ i = 1 m i n ( m , n ) λ i error = 1 - \frac{\sum_{i=1}^k\lambda_i}{\sum_{i=1}^{min(m,n)}\lambda_i} error=1i=1min(m,n)λii=1kλi

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值