经典卷积网络之DenseNet的论文解读及代码实现

文章背景

最近的工作显示如果在靠近输入输出的层数之间加入短连接(short connections)能大幅度的提升训练的深度、准确度与效率。基于这种思想,这篇论文提出了一种全新的网络结构Dense Convolutional Network(DenseNet):将每一层与出层之外的所有层连接起来。也就是说对于有L层的传统卷积网络而言,有L个连接,但是对于DenseNet而言有L(L+1)/2个连接。

思想

全文有两个公式第一个公式是关于ResNet的,其中   l \ {l}  l表示层数,   x l \ {x_l}  xl表示第   l \ {l}  l的输出,   H \ {H}  H表示非线性变换。
  x l = H l ( x l − 1 ) + x l − 1 \ {x_l= H_l(x_{l-1}) + x_{l-1}}  xl=Hl(xl1)+xl1
第二个公式是关于DenseNet的
  x l = H l ( [ x 0 , x 1 , x 2 , . . . , x l − 1 ] ) \ x_l =H_l([x_0,x_1,x_2,...,x_{l-1}])  xl=Hl([x0,x1,x2,...,xl1])
从这两个公式可以很清楚的看出两种网络思路上的区别,resnet是通过将这层的输出与前一层的输出相加;densenet是将前面所有的输出全部concatenat。

网络结构

在这里插入图片描述
这是densenet中的一个dense block
在这里插入图片描述
这是densenet网络的结构由多个denseblock组成

代码实现

class bottleneck_layer(layers.layer):
 def __init__(self, x, filters, filters= “自定义”, stride=1):
  super(bottleneck_layer, self).__init__()
  
  #有denseblock的结构图可以看出bn+relu+conv为一个单元
  self.bn = layers.BatchNormalization()
  self.relu = layers.Activation('relu')
  self.conv1 = layers.Con2D(x, use_bias=False, filters = 4*filters, kernel_size=[1,1], strides=stride, padding='same')
  self.dp = layers.Dropout(0.2)
  
  self.conv2 = layers.Con2D(x, use_bias=False, filters = filters, kernel_size=[3,3], strides=stride, padding='same')
 
 def call(self, input, training = None):
  out = self.bn(input)
  out = self.relu(out)
  out = self.conv1(out)
  out = self.dp(out)
  
  out = self.bn(input)
  out = self.relu(out)
  out = self.conv2(out)
  out = self.dp(out)
  
  return out
class transition_layer(layers.layer):
 def __init__(self, x, filters, stride=1):
  super(transition_layer, self).__init__()
  
  self.bn = layers.BatchNormalization()
  self.relu = layers.Activation('relu')
  in_channel = x.shape[-1]
  self.conv1 = layers.Con2D(x, use_bias=False, filters = 0.5*in_channel, kernel_size=[1,1], strides=stride, padding='same')
  self.dp = layers.Dropout(0.2)
  self.avgpool=layers.GlobalAveragePooling2D()
 
 def call(self, input, training = None):
  out = self.bn(input)
  out = self.relu(out)
  out = self.conv(out)
  out = self.dp(out)
  out = self.avgpool(out)
  return out
def dense_block(input, num_blocks):
	layers_concat = list()
	layers_concat.append(input)
	x = bottleneck_layer(input)
	layers_concat.append(x)
	for i in range(nb_layers - 1):
        	x = Concatenation(layers_concat)
        	x = self.bottleneck_layer(x)
        	layers_concat.append(x)
        x = Concatenation(layers_concat)
        return x
class Dense_net(keras.Model):
	  def __init__(self, input, filters="自定义", stride=1):
	  super(Dense_net, self).__init__()
	  
	  self.conv1 = layers.Con2D(x, use_bias=False, filters = 2*filters, kernel_size=[7,7], strides=2, padding='same')
	  self.block1 = dense_block(input, nb_layers=6)
	  self.trans1 = transition_layer(input)
	  
	  self.block2 = dense_block(input, nb_layers=12)
	  self.trans2 = transition_layer(input)
	  
	  self.block3 = dense_block(input, nb_layers=48)
	  self.trans3 = transition_layer(input)
	  
	  self.block4 = dense_block(input, nb_layers=32)
	  
	  self.bn = layers.BatchNormalization()
	  self.relu = layers.Activation('relu')
	  self.avgpool=layers.GlobalAveragePooling2D()
	  
	  self.dense = layers.Dense(input, units = "自定义", name = linear)
	def call(self, input, training = None):
	  out = self.conv1(input)
	  out = self.block1(out)
	  out = self.trans1(out)
	  out = self.block2(out)
	  out = self.trans2(out)
	  out = self.block3(out)
	  out = self.trans3(out)
	  out = self.block4(out)
	  out = self.bn(out)
	  out = self.relu(out)
	  out = self.avgpool(out)
	  out = flatten(out)
	  out = self.dense(out)
	  return out
		```
		
		
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在深度学习中,卷积神经网络(Convolutional Neural Network, CNN)是最常用和最流行的网络结构之一。然而,CNN 有一个缺点,即每一层只能提取特定大小的特征。这可能导致信息丢失和性能下降。为了解决这个问题,动态卷积被引入了 CNN 中。与传统的卷积相比,动态卷积可以自适应地学习特征的大小和形状。 DenseNet-Inception 模型是一种结合了 DenseNet 和 Inception 的网络结构,其中 DenseNet 使用密集连接来提高特征的重用,Inception 利用不同大小的卷积核来提取不同大小的特征。在这个模型中,动态卷积被引入到了 Inception 模块中,以提高模型的性能。 以下是 DenseNet-Inception 模型代码实现: ```python import torch import torch.nn as nn import torch.nn.functional as F class DenseNetInception(nn.Module): def __init__(self, num_classes=10): super(DenseNetInception, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Inception module with dynamic convolution self.inception1 = InceptionModule(64, 64, 96, 128, 16, 32, 32) self.inception2 = InceptionModule(256, 128, 128, 192, 32, 96, 64) self.inception3 = InceptionModule(480, 192, 96, 208, 16, 48, 64) self.inception4 = InceptionModule(512, 160, 112, 224, 24, 64, 64) self.inception5 = InceptionModule(512, 128, 128, 256, 24, 64, 64) self.inception6 = InceptionModule(512, 112, 144, 288, 32, 64, 64) self.inception7 = InceptionModule(528, 256, 160, 320, 32, 128, 128) self.inception8 = InceptionModule(832, 256, 160, 320, 32, 128, 128) self.inception9 = InceptionModule(832, 384, 192, 384, 48, 128, 128) # DenseNet module self.dense_block1 = DenseBlock(832, 32) self.trans_block1 = TransitionBlock(1024, 0.5) self.dense_block2 = DenseBlock(512, 32) self.trans_block2 = TransitionBlock(768, 0.5) self.dense_block3 = DenseBlock(384, 32) self.trans_block3 = TransitionBlock(576, 0.5) self.dense_block4 = DenseBlock(288, 32) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(288, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.inception1(x) x = self.inception2(x) x = self.inception3(x) x = self.inception4(x) x = self.inception5(x) x = self.inception6(x) x = self.inception7(x) x = self.inception8(x) x = self.inception9(x) x = self.dense_block1(x) x = self.trans_block1(x) x = self.dense_block2(x) x = self.trans_block2(x) x = self.dense_block3(x) x = self.trans_block3(x) x = self.dense_block4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class InceptionModule(nn.Module): def __init__(self, in_channels, out1, out2_1, out2_2, out3_1, out3_2, out4_2): super(InceptionModule, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(in_channels, out1, kernel_size=1), nn.BatchNorm2d(out1), nn.ReLU(inplace=True) ) self.branch2 = nn.Sequential( nn.Conv2d(in_channels, out2_1, kernel_size=1), nn.BatchNorm2d(out2_1), nn.ReLU(inplace=True), DynamicConv2d(out2_1, out2_2, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(out2_2), nn.ReLU(inplace=True) ) self.branch3 = nn.Sequential( nn.Conv2d(in_channels, out3_1, kernel_size=1), nn.BatchNorm2d(out3_1), nn.ReLU(inplace=True), DynamicConv2d(out3_1, out3_2, kernel_size=5, stride=1, padding=2, bias=False), nn.BatchNorm2d(out3_2), nn.ReLU(inplace=True) ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1), nn.Conv2d(in_channels, out4_2, kernel_size=1), nn.BatchNorm2d(out4_2), nn.ReLU(inplace=True) ) def forward(self, x): branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4] return torch.cat(outputs, 1) class DenseBlock(nn.Module): def __init__(self, in_channels, growth_rate): super(DenseBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, 4 * growth_rate, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(4 * growth_rate) self.relu = nn.ReLU(inplace=True) self.conv2 = DynamicConv2d(4 * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(growth_rate) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = torch.cat([x, out], 1) return out class TransitionBlock(nn.Module): def __init__(self, in_channels, reduction): super(TransitionBlock, self).__init__() self.conv = nn.Conv2d(in_channels, int(in_channels * reduction), kernel_size=1, bias=False) self.bn = nn.BatchNorm2d(int(in_channels * reduction)) self.relu = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x): out = self.conv(x) out = self.bn(out) out = self.relu(out) out = self.avgpool(out) return out class DynamicConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(DynamicConv2d, self).__init__() self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def forward(self, x): weight = F.pad(self.weight, (self.padding, self.padding, self.padding, self.padding)) weight = weight[:, :, :x.shape[-2] + self.padding * 2, :x.shape[-1] + self.padding * 2] out = F.conv2d(x, weight, self.bias, self.stride, 0, self.dilation, self.groups) return out ``` 在这个代码中,我们定义了一个 DenseNet-Inception 模型,并实现了动态卷积。在模型中,我们首先定义了一个标准的卷积层,然后定义了 Inception 模块和 DenseNet 模块。在 Inception 模块中,我们引入了动态卷积,以提高模型的性能。在 DenseNet 中,我们使用了密集连接来提高特征的重用。最后,我们定义了一个全连接层来分类。 如果您想使用这个模型来训练数据,请确保您已经定义了数据集,并使用合适的优化器和损失函数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值