相机标定主要是想得到相机的内参(internal parameters),根据笔者以前学过的知识和在网上浏览的大量案例,发现目前使用最多的标定方法还是“棋盘标定法”。
首先我们要打印出一张棋盘,为尽量减少外部环境的干扰,我们将棋盘贴在平整的白色墙壁上。在采集图片的过程中,要保证棋盘有足够的光照、从尽量多的角度拍摄以及保证图案在屏幕的不同位置。
需要注意的是,在标定的过程中,很难知道图片的好坏,对于拍摄的不好的图片在计算过程中可能会被剔除,所以尽量拍20张以上的照片。
关于单目相机标定原理见链接:
https://www.jianshu.com/p/b4479e746025
关于单目相机标定代码见链接:
https://github.com/DadofDragons/3D-restruction-based-on-Monocular-Camera
先记录代码中出现的一些函数
np.prod(), 返回各元素的乘积,如果设定axis则返回行积或者列积
np.mgrid[],返回多维结构
np.mgrid[0:8, 0:6] 返回286的结构
cv2.calibrateCamera()对相机进行标定,返回相机的内参矩阵cameraMatrix、相机的5个畸变系数distCoeffs,另外每张图像都会生成属于自己的平移向量和旋转向量。
具体参考
https://blog.csdn.net/weixin_41695564/article/details/80422329
基于单目相机的三维重建之单目相机标定
最新推荐文章于 2024-04-26 17:22:35 发布