反常积分和定积分的应用 1

网课

还是得跟上网课的进度。但是不要给自己太大的压力。看到数学题确实有点慌张。老师为什么说写对了不要打对号,我感觉打对号可以给自己充足的正反馈。关键问题就是能做对的题不多。这篇笔记主要整理网课的一些笔记。网课落下的比较多,大概还需要补好几个小时才能补上来。另外还要写讲义和练习题。最近可以多学一点数学。毕竟数学非常非常重要。一个非常稳定的数学成绩,可以给人以信心。

反常积分

分为无穷积分和瑕积分。想起来这个网课不能只看一遍,假设不理解这个知识点的话,可以多看几遍,当初学习算法的时候,几个视频,可能可以看个三四遍之类的。然后当时算是迷迷糊糊地理解了,现在可能又忘了。毕竟用的比较少。积分上下限只要有一个是无穷就是无穷积分,假设极限存在,就是收敛,极限不存在就是发散,和数列极限的描述比较接近。

判断瑕点

瑕积分的求解过程需要找到瑕点,瑕点是使得函数无定义的点,并且该点处的极限是无穷大,类似于垂直渐近线,无穷间断点。假设积分区间上存在瑕点,可以以瑕点作为分界点拆开,认为是可加性的拆开。假设不存在瑕点,计算反常积分就是计算定积分,但是在反常点处需要额外取极限。反常点就是在这个点的极限是无穷大。(今天是愚人节,愚人节有没有什么习俗?April Fool’s Day,好像除了开开玩笑,就没什么习俗了,想岔了,Trick or treat,是万圣节的习俗。)

反常积分的可加性拆开

实际上是使用定积分的性质。这个应该是恒成立的。没看到过定积分的性质在使用的时候有什么限制的。拆开之后的两个定积分假设都是发散的,整个定积分也是发散的。 这个和我们平常理解的,不知道会不会有些出入,因为我们在学习极限四则运算的时候,两个极限不存在,它们的和的极限是未知的,可能存在可能不存在,和这里是不一样的。

拆开之后的两个定积分是发散的,整个定积分也是发散的,实际上这个是一种规定。我们按照可加性把一个反常积分拆开变成两个定积分,只有两个定积分均收敛时我们认为整个反常积分时收敛的,否则认为是发散的。

按照这个性质,我们在解题时,假设积分区间中间存在瑕点,我们以瑕点为分界点,把反常积分根据可加性拆开为两个定积分,有一个定积分时发散的,整个反常积分就是发散的,这是一种数学上的规定。

反常积分按照极限四则运算拆开

这个和极限的四则运算的规则是一致的。

反常积分的奇偶性

正无穷和负无穷的和,应该是一个极限问题,不能简单地认为就是零。我们在使用这个性质的时候,一定需要保证一半的区间是收敛的,因为假设不能保证一半区间是收敛的,根据反常积分的可加性,拆开变成两个定积分的和,规定了只要有一个定积分是发散的,整个反常积分就是发散的。这个就和我们规定四月一号是愚人节一样,是人为规定滴。如果我们认为这个是有意思的,记住就好了。

我们判断奇偶性的时候,只有加减法和乘法可以快速判断奇偶性,除法我们需要把变量换成相反数,然后观察和原来函数的关系。

奇函数与偶函数的和,奇偶性无法确定。

反常积分的比较审敛法

这个名字看起来非常吓人。我完全没有接触过,但是这个名字非常高级,都是纸老虎。我认为。现在是基础阶段,学的是比较基础的比较审敛法。比较审敛法,貌似就是看反常积分是收敛还是发散的。

幂函数的图像如下,我们做数学题,能画图尽可能画图,可以极大地简化计算。
在这里插入图片描述

p 积分

口诀是,也不是口诀吧,我用我自己的话描述一下:假设趋向于无穷的时候,p 比 1 大,该函数就是收敛的。因为比较大的时候影响是否发散。可能有些牵强。可能还是得多重复才能记得住。对于从 0 开始的积分区间,0 这个点影响敛散性,p 比 1 小的时候反常积分是收敛的。

老师实际上确实是总结了非常多的经验。初中物理老师总结正电荷的时候,说玻璃棒是正义的。我到现在都记得。哈哈哈。

反常点

反常点就是瑕点和正负无穷点。应试实际上是一门细致的技术活。比拼的可能不是努力,而是技术,当然技术需要努力才能提升。感动自我。定积分一定是收敛的。等价之后不应该产生瑕点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三冬四夏会不会有点漫长

一块钱也是支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值