无穷积分的性质与收敛判别 | 瑕积分的性质与收敛判别 |
柯西准则: 无穷积分 | 柯西准则: 瑕积分
|
性质1(线性性): 若 | 性质1(线性性): 设函数 |
性质2(区间可加性): 若f在任何有限区间[a,u]上可积,a<b,则 由性质2可导出 | 性质2(区间可加性): 设函数f的瑕积分为x=a, |
性质3(绝对值不等式): 若f在任何有限区间[a,u]上可积,且有 绝对收敛与条件收敛 | 性质3(绝对值不等式): 设函数f的瑕点为x=a,f在(a,b]的任一内闭区间[u,b]上可积,则当 绝对收敛与条件收敛 |
比较原则: 设定义在 大收小发 | 比较原则: 设定义在(a,b]上的两个非负函数f和g,瑕点同为x=a,在任何 大收小发 |
推论1(比较原则的极限形式): 如f和g都在任何有限区间[a,u]上可积,当 (i)当 (ii)当c=0时,由 (iii)当 | 推论1(比较原则的极限形式): 若 (i)当 (ii)当c=0时,由 (iii)当 |
如果选用 推论2(柯西判别法): 设f定义于 (i)当 (ii)当 | 如果选用 推论2(柯西判别法): 设f定义于 (i)当 (ii)当 |
推论3(柯西判别法的极限形式): 设f是定义于 (i)当p>1, (ii)当 | 推论3(柯西判别法的极限形式): 设f是定义于 (i)当0<p<1, (ii)当 |
狄利克雷判别法: 若 阿贝尔(Abel)判别法: 若 | 狄利克雷判别法: 设a为f(x)的瑕点,函数 阿贝尔(Abel)判别法: 设a为f(x)的瑕点,瑕积分 |