反常积分的性质与收敛判别

无穷积分的性质与收敛判别

瑕积分的性质与收敛判别

柯西准则:

无穷积分\int_{a}^{+\infty }f(x)dx收敛的充要条件是:\forall\varepsilon >0,\exists G\geqslant a,只要u_1,u_2>G,便有\left | \int_{a}^{u_2}f(x)dx-\int_{a}^{u_1}f(x)dx \right |=\left | \int_{u_1}^{u_2}f(x)dx \right |<\varepsilon .

柯西准则

瑕积分\int_{a}^{b}f(x)dx(瑕点为a)收敛的充要条件是:\forall \varepsilon >0,\exists \delta >0,只要u_1,u_2\in (a,a+\delta ),总有\left | \int_{u_1}^{b}f(x)dx-\int_{u_2}^{b}f(x)dx \right |=\left | \int_{u_1}^{u_2}f(x)dx \right |<\varepsilon .

 

性质1(线性性):

\int_{a}^{+\infty }f_1(x)dx\int_{a}^{+\infty }f_2(x)dx都收敛,k_1,k_2为任意常数,则\int_{a}^{+\infty }[k_1f_1(x)+k_2f_2(x)]dx也收敛,且\int_{a}^{+\infty }[k_1f_1(x)+k_2f_2(x)]dx=k_1\int_{a}^{+\infty }f_1(x)dx+k_2\int_{a}^{+\infty }f_2(x)dx.

性质1(线性性):

设函数f_1f_2的瑕点同为x=a,k_1,k_2为常数,则当瑕积分\int_{a}^{b }f_1(x)dx\int_{a}^{b}f_2(x)dx都收敛时,瑕积分\int_{a}^{b }[k_1f_1(x)+k_2f_2(x)]dx必定收敛,并有\int_{a}^{b }[k_1f_1(x)+k_2f_2(x)]dx=k_1\int_{a}^{b}f_1(x)dx+k_2\int_{a}^{b}f_2(x)dx.

性质2(区间可加性):

若f在任何有限区间[a,u]上可积,a<b,则\int_{a}^{+\infty }f(x)dx\int_{b}^{+\infty }f(x)dx同敛态(即同时收敛或同时发散),且有\int_{a}^{+\infty }f(x)dx=\int_{a}^{b}f(x)dx+\int_{b}^{+\infty }f(x)dx.其中右边第一项是定积分。

由性质2可导出\int_{a}^{+\infty }f(x)dx收敛的另一充要条件:\forall\varepsilon >0,\exists G\geqslant a,u>G时,总有\left |\int_{u}^{+\infty }f(x)dx \right |<\varepsilon .

性质2(区间可加性)

设函数f的瑕积分为x=a,c\in(a,b)为任一常数,则瑕积分\int_{a}^{b}f(x)dx\int_{a}^{c }f(x)dx同敛性,并有\int_{a}^{b }f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b }f(x)dx.其中\int_{c}^{b}f(x)dx为定积分。

性质3(绝对值不等式):

若f在任何有限区间[a,u]上可积,且有\int_{a}^{+\infty }\left | f(x) \right |dx收敛,则\int_{a}^{+\infty }f(x)dx亦必收敛,并有\left | \int_{a}^{+\infty }f(x)dx \right |\leqslant \int_{a}^{+\infty }\left | f(x) \right |dx.

绝对收敛与条件收敛

性质3(绝对值不等式):

设函数f的瑕点为x=a,f在(a,b]的任一内闭区间[u,b]上可积,则当\int_{a}^{b}\left | f(x) \right |dx收敛时,\int_{a}^{b}f(x)dx也必定收敛,并有\left | \int_{a}^{b}f(x)dx \right |\leqslant \int_{a}^{b}\left | f(x) \right |dx.

绝对收敛与条件收敛

比较原则:

设定义在[a,+\infty )上的两个非负函数f和g都在任何有限区间[a,u]上可积,且满足f(x)\leqslant g(x),x\in[a,+\infty ),则当\int_{a}^{+\infty }g(x)dx收敛时\int_{a}^{+\infty }f(x)dx必收敛(当\int_{a}^{+\infty }f(x)dx发散时,\int_{a}^{+\infty }g(x)dx必发散)。

大收小发

比较原则

设定义在(a,b]上的两个非负函数f和g,瑕点同为x=a,在任何[u,b]\subset (a,b]上都可积,且满足0\leqslant f(x)\leqslant g(x),x\in(a,b],则当\int_{a}^{b }g(x)dx收敛时\int_{a}^{b }f(x)dx必收敛(当\int_{a}^{b }f(x)dx发散时,\int_{a}^{b }g(x)dx必发散)。

大收小发

推论1(比较原则的极限形式):

如f和g都在任何有限区间[a,u]上可积,当x\in[a,+\infty )时,f(x)\geqslant 0,g(x)>0,\lim_{x\to+\infty }\frac{f(x)}{g(x)}=c,则有:

(i)当0<c<+\infty时,\int_{a}^{+\infty }f(x)dx\int_{a}^{+\infty }g(x)dx同敛态;

(ii)当c=0时,由\int_{a}^{+\infty }g(x)dx收敛可推知\int_{a}^{+\infty }f(x)dx也收敛;

(iii)当c=+\infty时,由\int_{a}^{+\infty }g(x)dx发散可推知\int_{a}^{+\infty }f(x)dx也发散;

推论1(比较原则的极限形式):

f(x)\geqslant 0,g(x)>0,\lim_{x\to a^+ }\frac{f(x)}{g(x)}=c,则有:

(i)当0<c<+\infty时,\int_{a}^{b }f(x)dx\int_{a}^{b }g(x)dx同敛态;

(ii)当c=0时,由\int_{a}^{b }g(x)dx收敛可推知\int_{a}^{b }f(x)dx也收敛;

(iii)当c=+\infty时,由\int_{a}^{b}g(x)dx发散可推知\int_{a}^{b }f(x)dx也发散;

如果选用\int_{1}^{+\infty }\frac{dx}{x^p}作为比较对象,有如下两个推论

推论2(柯西判别法):

设f定义于[a,+\infty )(a>0),且在任何有限区间[a,u]上可积,则有:

(i)当0\leqslant f(x)\leqslant \frac{1}{x^p},x\in[a,+\infty ),且p>1时,\int_{a}^{+\infty }f(x)dx收敛;

(ii)当f(x)\geqslant \frac{1}{x^p},x\in[a,+\infty ),p\leqslant 1时,\int_{a}^{+\infty }f(x)dx发散;

如果选用\int_{a}^{b }\frac{dx}{(x-a)^p}作为比较对象,有如下两个推论

推论2(柯西判别法):

设f定义于(a,b]a为其瑕点,且在任何[u,b]\subset (a,b]上可积,则有:

(i)当0\leqslant f(x)\leqslant \frac{1}{(x-a)^p},且0<p<1时,\int_{a}^{b }f(x)dx收敛;

(ii)当f(x)\geqslant \frac{1}{(x-a)^p},p\geqslant 1时,\int_{a}^{b }f(x)dx发散;

推论3(柯西判别法的极限形式):

设f是定义于[a,+\infty )上的非负函数,在任何有限区间[a,u]上可积,且\lim_{x\to+\infty }x^pf(x)=\lambda .则有:

(i)当p>1,0\leqslant \lambda <+\infty时,\int_{a}^{+\infty }f(x)dx收敛;

(ii)当p\leqslant 1,0<\lambda \leqslant +\infty时,\int_{a}^{+\infty }f(x)dx发散;

推论3(柯西判别法的极限形式):

设f是定义于(a,b]上的非负函数,a为其瑕点,在任何[u,b]\subset (a,b]上可积,如果\lim_{x\to a^+}(x-a)^pf(x)=\lambda .则有:

(i)当0<p<1,0\leqslant \lambda <+\infty时,\int_{a}^{b }f(x)dx收敛;

(ii)当p\geqslant 1,0<\lambda \leqslant +\infty时,\int_{a}^{b}f(x)dx发散;

狄利克雷判别法:

F(u)=\int_{a}^{u }f(x)dx[a,+\infty )上有界,g(x)在[a,+\infty )上当x \rightarrow +\infty时单调趋于0,则\int_{a}^{+\infty }f(x)g(x)dx收敛。

阿贝尔(Abel)判别法:

\int_{a}^{+\infty }f(x)dx收敛,g(x)在[a,+\infty )上单调有界,则\int_{a}^{+\infty }f(x)g(x)dx收敛。

狄利克雷判别法:

设a为f(x)的瑕点,函数F(u)=\int_{a}^{b }f(x)dx(a,b]上有界,函数g(x)在(a,b]上单调且\lim_{x\to a^+}g(x)=0,则瑕积分\int_{a}^{+\infty }f(x)g(x)dx收敛。

阿贝尔(Abel)判别法:

设a为f(x)的瑕点,瑕积分\int_{a}^{b }f(x)dx收敛,函数g(x)在(a,b]上单调有界,则瑕积分\int_{a}^{b }f(x)g(x)dx收敛。

 

  • 48
    点赞
  • 174
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值