MobileNet V1版本
V1版本是把Depthwise卷积和Pointwise卷积组合到一起
Depthwise对输入特征图的每个通道做卷积操作提取特征
Pointwise用1x1的卷积核对刚刚得到的特征图进行卷积操作得到更多的特征图
Depthwise Separable卷积(上面那俩哥们合体)
参数量比较
普遍使用3x3的卷积核,MobileNet的参数量约是传统卷积的1/9
计算量比较
使用3x3的卷积核,同样是传统卷积的1/9
模型基本单元
传统卷积
MobileNet V1
网络结构
标准层数是28层,使用stride进行降采样而不是使用MaxPooling,参数集中在1x1的卷积中
如果需要再压缩参数量,可通过按比例减少通道数,例如0.25,0.5,0.75等进行倍率改变
压缩后的效果