本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
这个标题涉及到两个关键概念:深度强化学习和电力市场竞价策略。
-
深度强化学习:深度强化学习是一种机器学习方法,结合了深度学习和强化学习。在深度强化学习中,代理程序通过与环境的交互学习如何做出一系列决策,以最大化预期的累积奖励。这种方法适用于需要连续决策的问题,并且代理程序可以通过试错学习改进策略。
-
电力市场量价组合竞价策略:在电力市场中,发电厂和负荷可以通过竞价方式来决定电力的买卖。量价组合竞价策略指的是同时考虑电力量和价格,通过灵活调整竞价策略以最大化利润或满足特定的市场需求。
因此,标题所述的内容是指使用深度强化学习方法来制定电力市场竞价策略,其中策略不仅考虑了电力的数量,还考虑了价格的影响,以实现更有效的竞价行为和更优化的市场结果。这种方法有望在电力市场中提高参与者的利润和效率,并更好地满足电力系统的运行需求。
摘要:目前国内电力市场普遍采用“优先消纳、保障收购”的市场机制应对新能源消纳需求,因此传统能源将面对具有高不确定性的净负荷市场情形进行竞争,并通过策略报价使自身收益最大化。然而,现有策略报价的相关研究仅考虑了发电商报价而不报量、且忽略了竞争对手博弈主动性,导致难以反映策略发电商真实的市场竞价行为。对此,本文提出了一种基于深度强化学习的电力市场量价组合竞价策略分析方法。首先,针对现有策略竞价研究仅报价不报量的缺陷,研究了考虑量价组合申报的发电商双层双线性竞价模型。然后,为了考虑竞争对手行为的不确定性,构建了基于K-Medoi聚类方法与深度神经网络的发电商典型报价与净负荷间的概率映射,旨在为策略发电商提供贴近真实市场的竞价环境。最后,为了高效求解策略报价的双层双线性模型,探讨了考虑不完全信息博弈与净负荷不确定性的深度确定性策略梯度强化学习方法。算例研究验证了所提量价组合申报模型的有效性、以及所提方法应对电力市场净负荷和对手行为变化的鲁棒性,并能够提高发电商的竞价收益。
这段摘要提供了一项基于深度强化学习的电力市场竞价策略分析方法。以下是摘要的解读:
-
背景介绍:国内电力市场普遍采用“优先消纳、保障收购”的机制来处理新能源的消纳需求。这导致传统能源面临高度不确定性的净负荷市场竞争,需要通过策略性报价来最大化收益。
-
问题陈述:现有研究存在一些问题,例如只考虑发电商的报价而不考虑报量,以及忽略了竞争对手的主动性,这使得难以准确反映发电商在市场上的真实竞价行为。
-
方法提出:为了解决上述问题,本文提出了一种基于深度强化学习的电力市场竞价策略分析方法。首先,针对现有研究的不足,提出了考虑量价组合申报的发电商双层双线性竞价模型。其次,为了考虑竞争对手行为的不确定性,构建了基于K-Medoi聚类方法和深度神经网络的发电商典型报价与净负荷之间的概率映射,以更贴近真实市场情况。最后,为了高效求解策略报价的双层双线性模型,研究了考虑不完全信息博弈和净负荷不确定性的深度确定性策略梯度强化学习方法。
-
实验验证:通过算例研究验证了所提出的量价组合申报模型的有效性,以及提出的方法对电力市场净负荷和对手行为变化的鲁棒性。结果表明,该方法能够提高发电商的竞价收益。
总的来说,该研究旨在提出一种更有效的电力市场竞价策略分析方法,通过深度强化学习技术考虑量价组合申报、竞争对手行为不确定性等因素,以优化发电商的竞价收益并更好地适应市场变化。
关键词: 不确定性;电力现货市场;量价组合;深度强化学习;竞价策略;
这些关键词在上下文中的解读如下:
-
不确定性:指电力市场中的净负荷变化、竞争对手行为等因素带来的不确定性,对发电商的竞价策略产生影响。这包括了市场需求波动、新能源的随机性等因素。
-
电力现货市场:指的是电力市场中的现货交易市场,即按需即供的市场,供应商根据实时需求进行交易,价格通常在市场上波动。
-
量价组合:指发电商在电力市场中的报价不仅仅包括价格(价),还包括其愿意提供的电量(量),即量价组合。这是发电商在竞争中进行策略性定价的重要考虑因素。
-
深度强化学习:是一种机器学习方法,通过智能体与环境的交互学习,以达到实现某种目标的目的。在电力市场中,可以利用深度强化学习来学习发电商的最佳竞价策略,以最大化其收益。
-
竞价策略:指在电力市场中,发电商制定的用于报价的策略,包括价格、报量等方面的考虑。这些策略旨在使发电商在市场竞争中获得最大的利润,同时适应市场的不确定性和竞争对手的行为。
仿真算例:本文采用IEEE57 节点系统对所提模型及其求 解算法进行算例分析。考虑一个实时市场,市场出 清间隔为1小时。各发电商每小时进行一次投标并 进行出清,一共投标24次。设置7个发电商,其 中发电商G1为策略发电商,即对发电商G1建立 智能体进行竞价模拟训练,其余发电商的申报信息 作为发电商G1的竞价环境。此外,实际市场竞价 场景中通常同时包括价格接受者和价格制定者,因 此,本文设置发电商G2、G3为价格制定者,其报 价同样会影响市场出清价格,发电商G4-G7为价 格接受者。系统拓扑结构和发电商分布如附图 B1 所示。 各算例基于Intel i5-10400 CPU工作站完成,仿 真环境包括:基于Python和Pytorch实现训练环境 构建;基于MATLAB 2023和Gurobi分别实现深度 强化学习训练与市场出清求解。
仿真程序复现思路:
根据文章描述,可以将仿真的复现思路分为以下步骤,并以Python语言表示:
- 创建IEEE57节点系统模型。
- 设定实时市场参数,包括市场出清间隔、投标次数等。
- 设置发电商的角色和行为,包括策略发电商、价格制定者和价格接受者。
- 建立发电商之间的竞价环境。
- 使用Python和PyTorch构建智能体,用于策略发电商G1的竞价模拟训练。
- 利用MATLAB 2023和Gurobi实现深度强化学习训练和市场出清求解。
import networkx as nx
import matplotlib.pyplot as plt
import torch
import numpy as np
from gurobipy import *
# Step 1: Create IEEE57 node system model
def create_IEEE57_model():
G = nx.read_adjlist("IEEE57_adjlist.txt") # Assuming adjacency list format
return G
# Visualize IEEE57 model
def visualize_model(G):
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True)
plt.show()
# Step 2: Set real-time market parameters
market_interval = 1 # Market clearance interval in hours
bidding_rounds = 24 # Total number of bidding rounds
# Step 3: Set roles and behaviors of power generators
power_generators = {
'G1': {'role': 'strategy', 'behavior': 'bidder'}, # Strategy power generator
'G2': {'role': 'price', 'behavior': 'maker'}, # Price maker
'G3': {'role': 'price', 'behavior': 'maker'}, # Price maker
'G4': {'role': 'price', 'behavior': 'receiver'}, # Price receiver
'G5': {'role': 'price', 'behavior': 'receiver'}, # Price receiver
'G6': {'role': 'price', 'behavior': 'receiver'}, # Price receiver
'G7': {'role': 'price', 'behavior': 'receiver'} # Price receiver
}
# Step 4: Build bidding environment among power generators
def build_bidding_environment():
# Code to build bidding environment among power generators
pass
# Step 5: Build intelligent agent using Python and PyTorch
class IntelligentAgent(torch.nn.Module):
def __init__(self):
super(IntelligentAgent, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc2 = torch.nn.Linear(hidden_size, output_size)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# Step 6: Implement deep reinforcement learning training and market clearance using MATLAB and Gurobi
def train_and_clear_market():
# Code to implement deep reinforcement learning training and market clearance
pass
# Main function
if __name__ == "__main__":
# Step 1: Create IEEE57 node system model
G = create_IEEE57_model()
# Step 2: Visualize IEEE57 model
visualize_model(G)
# Step 3: Set real-time market parameters
# Step 4: Build bidding environment among power generators
# Step 5: Build intelligent agent using Python and PyTorch
input_size = 10 # Example input size
hidden_size = 20 # Example hidden layer size
output_size = 1 # Example output size
agent = IntelligentAgent()
# Step 6: Implement deep reinforcement learning training and market clearance using MATLAB and Gurobi
train_and_clear_market()
以上是仿真的复现思路的简要示例,其中部分步骤需要具体的模型和算法实现。实际仿真过程中,需要进一步细化和完善每个步骤的具体实现。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html