基于情感分析的LSTM预测股票走势

目录

一.LSTM

二.股票数据

 三.文本数据

 四.文本数据情感分析

五.数据合并,归一化分析

 六.对变量进行相关性分析

 七.基于lstm进行股票价格预测

一.LSTM

        在金融时间序列分析中,长短期记忆网络(LSTM)因其能够捕捉数据中的长期依赖关系而被广泛采用。本文就不在此进行多说,相关文章可以借鉴<如何从RNN起步,一步一步通俗理解LSTM>,LSTM的主要优势在于它的门控机制,包括遗忘门、输入门和输出门,如图2所示

二.股票数据

        研究采集2000年至2024年的浦发银行股票交易数据,涵盖开盘价、收盘价、最高价、最低价、成交量及成交金额等。爬取东方财经网的浦发银行评论共3479条,从国家统计局与Choice金融终端共收集到2000-2024年的股票价格数据共3393条数据,如图下所示 :

open

close

high

low

volume

sum

2010-02-03

19.31

19.89

19.93

19.01

76493075

1.5E+09

2010-02-04

19.61

19.66

19.89

19.6

46162099

9.09E+08

2010-02-05

19.2

19.42

19.68

19.16

43895954

8.5E+08

2010-02-08

19.45

19.22

19.5

19.08

37230982

7.17E+08

2010-02-09

19.2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值