推荐系统实例
# -*- coding: utf-8 -*-
from math import sqrt
# 一个涉及影评者及其对几部影片评分情况的字典
critics = {
'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5,
'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0,
'You, Me and Dupree': 3.0, 'The Night Listener': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5,
'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.0},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0,
'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0,
'Superman Returns': 5.0,
'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane': 4.5, 'You, Me and Dupree': 1.0, 'Superman Returns': 4.0}}
def sim_distance(prefs, person1, person2):
"""
返回一个有关person1和person2的基于距离的相似度评价
得到shared_items的列表
"""
si = {}
for item in prefs[person1]:
if item in prefs[person2]:
si[item] = 1
# 如果两者没有共同之处,则返回0
if len(si) == 0: return 0
# 计算所有差值的平方和
sum_of_squares = sum(
[pow(prefs[person1][item] - prefs[person2][item], 2) for item in prefs[person1] if item in prefs[person2]])
return 1 / (1 + sqrt(sum_of_squares))
def sim_pearson(prefs, p1, p2):
"""
返回p1和p2的皮尔逊相关系数
得到双方都曾评价过的物品列表
"""
si = {}
for item in prefs[p1]:
if item in prefs[p2]: si[item] = 1
# 得到列表元素的个数
n = len(si)
# 如果两者没有共同之处,则返回1
if n == 0: return 1
# 对所有偏好求和
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si])
# 求平方和
sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
sum2Sq = sum([pow(prefs[p2][it], 2) for it in si])
# 求乘积之和
pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
# 计算皮尔逊评价值
num = pSum - (sum1 * sum2 / n)
den = sqrt((sum1Sq - pow(sum1, 2) / n) * (sum2Sq - pow(sum2, 2) / n))
if den == 0: return 0
r = num / den
return r
def topMatches(prefs, person, n=5, similarity=sim_pearson):
"""
从反映偏好的字典中返回最为匹配者
返回结果的个数和相似度函数均为可选参数
"""
scores = [(similarity(prefs, person, other), other)
for other in prefs if other != person]
# 对列表进行排序,评价值最高者排在最前面
scores.sort()
scores.reverse()
return scores[0:n]
def getRecommendations(prefs, person, similarity=sim_pearson):
"""利用所有他人评价值的加权平均,为某人提供建议"""
totals = {}
simSums = {}
for other in prefs:
# 不要和自己做比较
if other == person: continue
sim = similarity(prefs, person, other)
# 忽略评价值为零或小于零的情况
if sim <= 0: continue
for item in prefs[other]:
# 只对自己还未曾看到过的影片进行评价
if item not in prefs[person] or prefs[person][item] == 0:
# 相似度*评价值
totals.setdefault(item, 0)
totals[item] += prefs[other][item] * sim
# 相似度之和
simSums.setdefault(item, 0)
# setdefault(keyname, value) keyname 您要从中返回值的项目的键名。 value 如果键存在,则此参数无效。如果键不存在,则此值将成为键的值。
simSums[item] += sim
# 建立一个归一化的列表
rankings = [(total / simSums[item], item) for item, total in totals.items()]
# 返回经过排序的列表
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result = {}
for person in prefs:
for item in prefs[person]:
result.setdefault(item, {})
# 将物品和人员对调
result[item][person] = prefs[person][item]
return result
def main():
print(sim_distance(critics, 'Lisa Rose', 'Gene Seymour'))
print(sim_pearson(critics, 'Lisa Rose', 'Gene Seymour'))
print(topMatches(critics, 'Toby', n=5))
print(getRecommendations(critics, 'Toby'))
print(getRecommendations(critics, 'Toby', similarity=sim_distance))
movies = transformPrefs(critics)
print(topMatches(movies, 'Superman Returns'))
if __name__ == '__main__':
main()
参考资料
[1] Programming Colllective Intelligence by Toby Segaran.Copyright 2007 Toby Segaran, 978-0-596-52932-1