Transformer架构

Transformer架构是由Vaswani等人在2017年的论文《Attention is All You Need》中提出的,它是自然语言处理(NLP)领域的一个重要里程碑。Transformer模型的设计是为了克服传统循环神经网络(RNN)和卷积神经网络(CNN)在处理序列数据时存在的局限性,尤其是RNN在长序列处理中的性能瓶颈和并行计算能力的限制。

下面是Transformer架构的关键组成部分和特性:

  1. 编码器-解码器结构

    • 编码器(encoder):负责处理输入序列,将其转换为一组隐藏状态(向量表示)。
    • 解码器(decoder):接收编码器产生的隐藏状态,生成输出序列。
  2. 自注意力机制(Self-Attention Mechanism)

    • Transformer使用自注意力机制来捕捉输入序列中的依赖关系,而不是依靠递归或卷积操作。
    • 自注意力机制允许模型关注输入序列的不同部分,从而更好地处理长距离依赖问题。
  3. 多头注意力(Multi-Head Attention)

    • 在自注意力的基础上,模型可以并行地执行多个注意力函数,每个头关注不同位置的信息,从而捕获不同粒度的依赖关系。
    • 多头注意力机制增加了模型的表达能力。
  4. 位置编码(Positional Encoding)

    • 由于Transformer不依赖于递归或卷积操作,因此需要一种方式来提供序列元素的位置信息。
    • 位置编码被加到输入嵌入上,以告知模型各个单词在序列中的相对位置。
  5. 嵌入层(Input Embedding)

    • 输入序列中的每个标记都被映射到一个固定维度的向量表示,称为嵌入。
  6. 前馈网络(Feed-Forward Networks)

    • 每个编码器和解码器层之后都有一个完全连接的前馈网络,用于进一步处理信息。
    • 这些网络通常包含一个线性变换,接着是一个非线性激活函数(如ReLU)。
  7. 残差连接与层规范化(Residual Connections and Layer Normalization)

    • 残差连接有助于缓解梯度消失问题,同时也使训练更深的网络成为可能。
    • 层规范化在每个子层之前执行,确保了数值稳定性。
  8. 训练与优化

    • Transformer模型通常使用大规模的训练数据集和大量的计算资源来训练。
    • 模型优化通常采用Adam等自适应优化算法。
  9. 应用场景

    • 编码器-only模型(如BERT、RoBERTa):适用于文本分类、情感分析、命名实体识别等任务。
    • 编码器-解码器模型(如T5):适用于机器翻译、文本生成和问答系统等任务。
    • 解码器-only模型(如GPT系列):主要用于文本生成和对话系统等任务。

Transformer架构因其高效性和灵活性,在许多NLP任务中取得了非常好的效果,并且已经被广泛应用到了各种任务中,包括但不限于机器翻译、文本摘要、问答系统、情感分析等。此外,基于Transformer的模型也在不断地发展和改进之中,出现了许多变体和扩展,如Bert、GPT-3、T5等。

自注意力机制(Self-Attention Mechanism)中的Q(Query,查询)、K(Key,键)、V(Value,值)是理解自注意力机制的核心概念。

假设我们有一个句子:“John likes to watch movies. Mary likes movies too.” 我们想要让模型理解这个句子的含义,并特别关注“Mary”这个词在句子中的上下文信息。

在这个例子中,我们可以把每个词看作是一个向量,这些向量通过嵌入层从词汇表中获取。

查询(Query)

  • 查询代表我们要关注的对象或者问题。
  • 在我们的例子中,如果我们想了解“Mary”的上下文,那么“Mary”就是我们的查询词。

键(Key)

  • 代表所有其他词提供的上下文信息,帮助我们判断哪些词与查询词最相关。
  • 对于“Mary”,我们需要了解句子中其他词的信息,以确定它是否喜欢观看电影。

值(Value)

  • 包含了每个词的具体内容,当我们找到与查询词最相关的词后,值提供了这些词的详细信息。
  • “Mary”的值就是关于“Mary”的具体信息,例如她是否喜欢看电影。

如何工作?

  1. 查询(Q): 我们对“Mary”进行查询,想要知道它与句子中其他词的相关性。
  2. 键(K): 句子中每个词都会有自己的键,用来衡量它与查询词的匹配程度。
  3. 值(V): 每个词也都有自己的值,包含了该词的具体信息。

现在,让我们用更具体的步骤来说明如何使用Q、K、V:

  1. 嵌入: 首先,我们将句子中的每个词映射成一个向量(词嵌入)。

  2. 变换: 接着,我们将每个词的嵌入分别通过不同的全连接层(线性变换)得到Q、K、V向量。这一步可以视为为每个词生成对应的查询、键和值。

  3. 计算注意力权重: 使用查询向量Q和所有词的键向量K来计算它们之间的相似度得分。这个得分越高,表示两个词之间的关系越紧密。通常,我们使用点积(内积)作为相似度度量,并经过softmax函数归一化,得到每个词对于查询词的注意力权重。

  4. 加权求和: 将注意力权重与相应的值向量V相乘,然后加权求和。这样就得到了一个综合了与查询词最相关的词的信息的新向量。

  5. 输出: 最终的输出向量包含了与查询词相关的上下文信息。

例子

假设“Mary”是我们的查询词,它的Q向量会与句子中每个词的K向量进行比较。比如“movies”这个词,如果它与“Mary”的Q向量相似度很高,那么“movies”的V向量就会被赋予较高的权重。最终,“Mary”的输出向量将会包含来自“movies”以及其他与“Mary”高度相关的词的信息。

通过这种方式,自注意力机制能够有效地捕捉到句子内部的依赖关系,并帮助模型更好地理解语句的含义。

  • 18
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值