- 博客(1548)
- 收藏
- 关注
原创 声明 | 从未和“某某算法屋”这个账号合作,曝光抄袭!
ID:前程算法屋 你真牛!!!抄的真棒都不用自己写文案了两个小写字母是我不小心敲错了,你也敲错了吗?太巧了吧!直接用我的图数值都是一样的?我还是只列举了四个,大家注意甄别吧,从来没和这个ID合作过,而且可以看他的发布时间和我的对一下,甚至图片很多都用我的指标的数值都一样,很多发的图和文案啥的都对不上。明眼人可以自行查证一下发布时间就清楚了。再次声明本账号从未和这个账号进行合作,奉劝你一句适可而止吧,你这样做你和你主页说的这些账号有什
2024-12-31 15:48:54
1432
1
原创 Matlab【独家原创】基于BiTCN-BiGRU-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于BiTCN-BiGRU和SHAP的可解释性分类预测模型。该模型采用双向时间卷积网络结合双向门控循环单元结构,提供数据多输入单输出预测功能。针对SHAP分析速度慢的问题,程序提供了正常版和提速版两种计算方案。模型通过SHAP方法量化各特征对决策的影响程度,实现预测性能与解释能力的统一。代码支持MATLAB 2020b及以上版本,包含完整中文注释,可直接替换Excel数据集运行,适用于二分类和多分类任务,并附带测试数据集和详细使用说明。
2026-02-05 23:24:04
317
原创 Matlab【独家原创】基于BiTCN-GRU-SHAP可解释性分析的分类预测
本文介绍了一种基于BiTCN-GRU和SHAP的可解释性分类预测模型。该模型结合双向时间卷积网络与门控循环单元,实现多输入单输出的分类预测,并利用SHAP方法提供决策解释。为解决SHAP分析速度问题,程序提供正常版和提速版两种计算文件。模型在保持高预测精度的同时,通过SHAP量化各特征贡献,直观展示决策逻辑。代码兼容二分类和多分类任务,附带测试数据集,支持MATLAB 2020b及以上版本运行。
2026-02-05 23:23:20
245
原创 Matlab【独家原创】基于TCN-BiGRU-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于TCN-BiGRU神经网络和SHAP可解释性分析的数据分类预测模型。该模型采用时间卷积网络结合双向门控循环单元架构,通过SHAP方法提供决策过程的解释分析。为提升计算效率,程序提供两种SHAP计算版本(标准版和提速版)。代码采用MATLAB编写(需2020b及以上版本),支持二分类和多分类任务,包含详细中文注释。运行结果展示包括分类效果图、优化过程图和混淆矩阵等可视化分析。该方案实现了预测精度与模型可解释性的平衡,适用于各类数据分析需求。
2026-02-05 23:22:29
416
原创 Matlab【独家原创】基于TCN-GRU-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于TCN-GRU神经网络结合SHAP可解释性分析的多输入单输出分类预测模型。该程序提供两种SHAP计算版本(正常版和提速版),并附带详细使用说明。模型采用MATLAB 2020b及以上版本运行,支持二分类和多分类任务,具有清晰的中文注释和高质量代码。运行结果包含分类效果图、迭代优化图和混淆矩阵图等可视化展示。文章还提供了测试数据集,适合机器学习初学者使用。该混合建模框架实现了预测精度与解释能力的统一,为模型优化和决策支持提供了科学依据。
2026-02-05 23:21:33
249
原创 Matlab【独家原创】基于TCN-BiLSTM-SHAP可解释性分析的分类预测
本文介绍了一种基于TCN-BiLSTM神经网络结合SHAP可解释性分析的数据分类预测模型。该模型采用时间卷积网络和双向长短期记忆神经网络的混合架构,能够处理多输入单输出的分类任务。针对SHAP分析速度较慢的问题,程序提供了正常版和提速版两种计算文件。文章阐述了SHAP方法的理论基础及其在模型解释中的优势,能够量化各特征对预测结果的贡献。该方案在MATLAB2020b及以上环境中运行,支持二分类和多分类任务,并附带测试数据集,适合各类用户使用。运行结果包括分类效果图、迭代优化图和混淆矩阵图等可视化输出。
2026-02-05 23:20:40
255
原创 Matlab【独家原创】基于TCN-LSTM-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于TCN-LSTM神经网络结合SHAP可解释性分析的数据分类预测模型。该模型采用时间卷积网络与长短期记忆网络的混合架构,针对SHAP分析速度慢的问题提供了正常版和提速版两种计算方案。文章阐述了SHAP方法的理论基础及其在模型可解释性方面的优势,能够量化各特征对预测结果的贡献度。代码支持MATLAB 2020b及以上版本,适用于二分类和多分类任务,包含分类效果图、优化迭代图等可视化结果。程序附带测试数据集,具有中文注释,便于使用者快速上手。
2026-02-05 23:18:46
316
原创 【独家原创】基于K均值聚类+KNN-LSTM-RF数据填补的时序数据清洗模型 Matlab代码
摘要:本文介绍了一种基于K均值聚类+KNN-LSTM-RF的多模型协同数据清洗Matlab代码。创新性地融合了四类异常检测方法(3σ、滑动窗口Z-score、IQR和一阶差分),通过组合策略将检测精度提升至94.3%。采用KNN(40%)+LSTM(30%)+RF(30%)的自适应加权填补架构,相比单一模型显著降低误差。代码具有距离度量自适应、动态优化聚类数等亮点,提供完整的数据质量视图和异常分析功能,适用于风电等时序数据的智能化清洗。代码附带测试数据集,中文注释清晰,支持Matlab 2020b及以上版本
2026-02-03 23:53:06
931
原创 基于SVM-Adaboost多变量回归预测+交叉验证 Matlab代码 (多输入单输出)
摘要:本文介绍了一个基于SVM-Adaboost算法的多变量回归预测Matlab程序。该程序采用5折交叉验证(可调整),输入特征包括膜面积、流速、浓度等参数,输出为单变量预测结果。程序已调试完成,支持Excel数据格式,附带测试数据集,可直接运行。主要特点包括:中文注释清晰、支持多种评价指标(R2、MAE等)、输出丰富图表,适用于2018b及以上版本Matlab环境。程序通过交叉验证有效抑制过拟合,适合初学者直接使用。
2026-02-02 23:55:22
212
原创 基于LSTM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
本文介绍了一个基于LSTM神经网络和SHAP可解释性分析的多输入多输出回归预测模型。该模型通过结合机器学习与SHAP解释框架,在保证预测精度的同时增强了模型可解释性。代码采用MATLAB实现,包含中文注释,支持直接替换Excel数据集运行,并提供R2、MAE等多种评价指标。适用于需要模型预测与解释并重的应用场景,特别适合机器学习初学者使用。
2026-02-01 23:34:04
515
原创 基于SSA-BP多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
摘要:本文介绍了一种基于麻雀搜索算法(SSA)优化BP神经网络并结合SHAP可解释性分析的多输入多输出回归预测模型。该模型通过SSA优化BP神经网络的参数,提高预测精度,并利用SHAP方法对模型决策过程进行可视化解释,实现预测性能与可解释性的统一。代码采用MATLAB编写,适用于2018b及以上版本,提供R2、MAE等多种评价指标和丰富可视化结果。数据集可直接替换使用,适合初学者快速上手。
2026-02-01 23:33:10
315
原创 基于LSSVM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
摘要:本文介绍了一种基于最小二乘支持向量机(LSSVM)和SHAP可解释性分析的多输入多输出回归预测模型。该模型结合机器学习的高预测精度与SHAP方法的可解释性优势,通过Shapley值量化各特征对预测结果的贡献,实现决策过程可视化。代码采用MATLAB编写(2018b及以上版本),包含R2、MAE等评价指标,附带测试数据集,用户只需替换Excel格式数据即可运行。该方案为复杂系统建模提供了兼具预测性能和解释能力的解决方案,特别适合需要模型可解释性的应用场景。
2026-02-01 23:32:23
306
原创 基于BP多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
摘要:本文介绍了一种基于BP神经网络结合SHAP可解释性分析的多输入多输出回归预测模型。该模型通过SHAP方法量化特征贡献,实现预测精度与解释能力的平衡。代码支持MATLAB 2018b及以上版本,包含R2、MAE等评价指标,提供中文注释和测试数据集,适用于新手直接使用。文章展示了代码运行结果,并提供了获取方式。该混合建模框架为复杂系统决策提供了有效的分析工具。
2026-02-01 00:12:32
535
原创 [独家原创]基于分位数回归PSO-QRLightGBM多变量回归-区间预测(多输入单输出) Matlab代码
本文介绍了一套基于分位数回归PSO-QRLightGBM的多变量回归区间预测Matlab代码。该代码采用Excel数据格式,实现多输入单输出的区间预测功能,包含变量重要性分析和误差曲线。程序已调试完成,用户可直接替换数据使用,并支持自定义算法调整。代码提供完整的中文注释,附带示例数据集,可输出包括PICP、PINAW等指标的预测结果图,且置信区间可调。文章最后提供了代码获取方式。
2026-02-01 00:10:41
535
原创 Matlab【独家原创】基于BiTCN-BiLSTM-SHAP可解释性分析的分类预测
摘要:本文介绍了一种基于BiTCN-BiLSTM神经网络结合SHAP可解释性分析的多输入单输出分类预测模型。该模型通过双向时间卷积网络和双向长短期记忆网络的结合提升预测性能,并利用SHAP方法提供模型决策过程的解释。程序包含两种SHAP计算版本(正常版和提速版),支持二分类和多分类任务。模型在保持高预测精度的同时,通过特征贡献分析实现决策过程的可视化。代码采用MATLAB2020b及以上版本运行,包含详细中文注释,附带测试数据集,适合不同水平的用户使用。
2026-02-01 00:08:11
346
原创 Matlab【独家原创】基于BiTCN-LSTM-SHAP可解释性分析的分类预测
本文介绍了一种基于双向时间卷积网络(BiTCN)结合长短期记忆神经网络(LSTM)的数据分类预测模型,并集成SHAP可解释性分析。该模型支持多输入单输出分类任务,针对SHAP分析速度慢的问题提供了两种计算版本(正常版和提速版)。程序采用MATLAB编写(需2020b及以上版本),支持二分类和多分类任务,包含详细中文注释。运行结果可展示分类效果图、迭代优化图和混淆矩阵图。模型结合了机器学习的高精度预测与SHAP的可解释性分析优势,通过特征贡献度量化各输入对决策的影响,为模型优化提供依据。附带测试数据集,适合各
2026-01-29 00:03:54
304
原创 Matlab【独家原创】基于WMA-CNN-BiGRU+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一种基于鲸鱼迁徙优化算法(WMA)优化的CNN-BiGRU混合模型,结合SHAP可解释性分析的分类预测方法。该模型通过WMA算法优化网络参数,提升预测性能,并采用SHAP方法提供局部和全局特征解释。程序包含正常版和提速版两种SHAP计算方案,支持MATLAB 2020b及以上版本运行,适用于二分类和多分类任务。代码附带测试数据集,提供分类效果图、优化迭代图和混淆矩阵等可视化结果。该混合建模框架实现了预测精度与模型可解释性的平衡,为复杂系统建模提供了有效解决方案。
2026-01-18 00:05:15
319
原创 Matlab【独家原创】基于WMA-CNN-GRU+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一种基于鲸鱼迁徙优化算法(WMA)优化的CNN-GRU混合模型,结合SHAP可解释性分析的分类预测方法。该模型采用两种SHAP计算版本(正常版和提速版)以适应不同数据需求,通过博弈论中的Shapley值量化特征贡献,在保持高预测精度的同时提升模型可解释性。代码兼容二分类和多分类任务,提供完整的运行结果展示(包括分类效果图、优化迭代图和混淆矩阵),附带测试数据集和详细使用说明,适用于MATLAB 2020b及以上环境。
2026-01-18 00:04:23
248
原创 Matlab【独家原创】基于WMA-CNN-BiLSTM+SHAP可解释性分析的分类预测 (多输入单输出)
本文介绍了一种基于鲸鱼迁徙优化算法(WMA)优化的CNN-BiLSTM混合神经网络模型,结合SHAP可解释性分析框架的多输入单输出分类预测方法。该模型通过WMA算法优化网络参数,提升预测性能,并采用SHAP方法对模型决策过程进行可视化解释。程序提供两种SHAP计算版本(常规版和提速版),附带详细使用说明和测试数据集,支持MATLAB 2020b及以上版本运行。模型可同时处理二分类和多分类任务,输出结果包含分类效果图、迭代优化曲线和混淆矩阵等可视化分析。该方案实现了预测精度与模型可解释性的统一,适用于需要决策
2026-01-18 00:03:35
404
原创 [原创基于CCO-LSSVM多输出回归+SHAP可解释性分析+NSGAII多目标优化算法的工艺参数优化 Matlab代码
本文介绍了一种基于杜鹃鲶鱼算法优化最小二乘向量机(CCO-LSSVM)的多输入多输出回归预测模型,结合SHAP可解释性分析。该模型通过NSGAII多目标优化算法寻找输出变量的极值并生成Pareto解集。代码采用MATLAB实现,包含完整的中文注释和测试数据集,支持直接替换数据使用。模型特点包括:1)利用SHAP方法提供模型决策的可解释性分析;2)采用CCO-LSSVM建立多输出代理模型;3)通过NSGAII实现多目标优化。运行环境要求MATLAB 2018b及以上版本,提供R2、MAE等多种评价指标和可视化
2026-01-15 23:32:24
503
原创 [原创]基于CCO-ELM多输出回归+SHAP可解释性分析+NSGAII多目标优化算法的工艺参数优化 Matlab代码
摘要:本文介绍了一种基于杜鹃鲶鱼算法优化极限学习机(CCO-ELM)的多输入多输出回归预测模型,结合SHAP可解释性分析和NSGAII多目标优化算法。该模型通过SHAP方法提供局部和全局特征解释,利用NSGAII算法寻找最优解集。代码采用MATLAB实现,包含两个主程序模块,支持直接替换Excel格式数据集运行。模型具有R2、MAE等多种评价指标,输出丰富可视化结果,适用于复杂系统的预测与解释需求,为机器学习模型的可解释性研究提供了有效解决方案。
2026-01-15 23:31:25
415
原创 [原创]基于ELM多输出回归+SHAP可解释性分析+NSGAII多目标优化算法的工艺参数优化 Matlab代码
摘要:本文介绍了一个基于ELM极限学习机和SHAP可解释性分析的多输入多输出回归预测模型。该模型通过ELM建立代理模型,结合SHAP进行特征贡献分析,实现高精度预测与决策解释的统一。同时采用NSGAII多目标优化算法寻找输出变量的极值解集。代码采用MATLAB编写,包含详细中文注释,支持多种评价指标,可直接替换Excel数据集使用。该方案适用于需要兼顾预测性能和模型可解释性的复杂系统建模场景,特别适合机器学习初学者使用。
2026-01-15 23:30:30
378
原创 [原创]基于CCO-LSSVM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
本文介绍了一种基于杜鹃鲶鱼算法优化最小二乘向量机(CCO-LSSVM)结合SHAP可解释性分析的多输入多输出回归预测模型。该模型通过SHAP方法量化特征贡献,实现预测精度与可解释性的统一。代码采用MATLAB编写(需2018b以上版本),包含中文注释,可直接替换Excel数据集使用,提供R2、MAE等多项评价指标及可视化结果。该创新方法将最新元启发式算法与可解释AI技术结合,为复杂系统建模提供了有效解决方案。
2026-01-15 23:29:20
331
原创 [原创]基于CCO-ELM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
本文介绍了一种基于杜鹃鲶鱼算法优化极限学习机(CCO-ELM)的多输入多输出回归预测模型,结合SHAP可解释性分析方法。该模型采用机器学习与SHAP的混合框架,在保持高预测精度的同时实现决策过程的可解释性。代码基于MATLAB 2018b及以上环境运行,提供R2、MAE等多种评价指标,附带测试数据集和中文注释,适合初学者使用。该创新方法将杜鹃鲶鱼优化算法与SHAP解释技术相结合,为复杂系统建模提供了新的解决方案。
2026-01-15 23:28:10
364
原创 基于ELM+SHAP可解释性分析的多输出回归预测 Matlab代码(多输入多输出)
本文介绍了一个基于ELM极限学习机和SHAP可解释性分析的多输入多输出回归预测模型。该模型结合机器学习与SHAP解释方法,在保持高预测精度的同时提供决策过程的可解释性。代码采用MATLAB编写,支持直接替换Excel数据集运行,包含R2、MAE等多种评价指标,并生成丰富可视化结果。该方案适用于需要模型解释性的复杂系统建模场景,为模型优化和决策提供支持。
2026-01-14 23:49:52
387
原创 基于BKA-LSTM-LSSVM数据分类预测 Matlab代码
摘要:本文介绍了一种基于贝叶斯算法优化的LSTM-LSSVM混合模型(BO-Bayes-LSTM-LSSVM)数据分类预测Matlab代码。该代码通过贝叶斯优化自动调整LSTM的隐藏层节点数、学习率和正则化系数,支持二分类和多分类任务。程序已调试完成,用户只需替换Excel格式数据集即可直接运行。运行环境要求MATLAB 2020b及以上版本,代码包含详细中文注释。运行结果可视化内容包括分类效果图、迭代优化图和混淆矩阵图。该模型适用于各类数据分类预测任务,具有较好的实用性和易用性。
2026-01-13 23:32:30
269
原创 基于贝叶斯算法优化Adaboost(BO-Adaboost/Bayes-Adaboost)数据分类预测 Matlab代码
本文介绍基于贝叶斯算法优化Adaboost(BO-Adaboost)的Matlab分类代码,适用于多输入单输出的数据分类预测。该程序已调试完成,可直接替换Excel数据集运行,支持二分类和多分类任务。运行环境要求MATLAB 2018b及以上版本,代码包含详细中文注释。结果展示包括分类效果图、迭代优化图和混淆矩阵图。用户可通过文末链接获取完整代码。
2026-01-13 23:31:47
55
原创 基于贝叶斯算法优化BP神经网络(BO-BP/Bayes-BP)的数据分类预测 Matlab代码
摘要:本文介绍了基于贝叶斯算法优化BP神经网络(BO-BP/Bayes-BP)的Matlab分类预测代码。该代码适用于多输入单输出的数据分类任务,通过贝叶斯优化自动调整隐藏层神经元数量和学习率。程序已调试完成,支持Excel格式数据输入,兼容MATLAB 2018b及以上版本,可实现二分类和多分类任务。运行结果包含分类效果图、迭代优化曲线和混淆矩阵等可视化图表。代码提供详细中文注释,用户可直接替换数据集使用。
2026-01-13 23:31:06
64
原创 Matlab 基于Bayes-Adaboost可解释性分析的分类预测
摘要:本文介绍了一种基于贝叶斯算法优化Adaboost的分类预测模型,结合SHAP可解释性分析方法。该模型针对多输入单输出数据,提供了两种SHAP计算版本(正常版和提速版)以适应不同需求。程序采用MATLAB 2020b及以上版本运行,支持二分类和多分类任务,包含完整中文注释。运行结果可视化展示分类效果、迭代优化过程和混淆矩阵分析。该混合建模框架实现了预测精度与解释能力的平衡,通过SHAP值量化特征贡献,为模型决策提供直观解释。配套测试数据集可直接运行,适合机器学习初学者使用。
2026-01-13 23:30:27
340
原创 Matlab 基于Bayes-RF可解释性分析的分类预测
摘要:本文介绍了一种基于贝叶斯优化随机森林(Bayes-RF)的分类预测模型,结合SHAP可解释性分析方法。该模型针对SHAP分析速度慢的问题,提供了正常版和提速版两种计算方案。程序采用MATLAB2020b及以上版本运行,支持二分类和多分类任务,包含分类效果图、迭代优化图和混淆矩阵图等可视化结果。模型通过SHAP值量化特征贡献,将博弈论概念应用于机器学习解释,实现了预测精度与可解释性的统一。代码提供完整中文注释和测试数据集,适合初学者使用。
2026-01-13 23:29:21
297
原创 Matlab 基于Bayes-BP可解释性分析的分类预测
摘要:本文介绍了一种基于贝叶斯算法优化BP神经网络并结合SHAP可解释性分析的分类预测模型(Bayes-BP+SHAP)。该模型解决了复杂机器学习模型的可解释性问题,通过SHAP方法量化各特征对预测结果的贡献。程序提供两种SHAP计算版本(常规版和提速版),并附带详细使用说明。模型支持二分类和多分类任务,运行环境要求MATLAB 2020b及以上版本,包含分类效果图、迭代优化图和混淆矩阵等可视化结果。代码注释清晰,附带测试数据集,便于直接运行和使用。
2026-01-13 23:28:11
307
原创 基于KRR核岭回归(Kernel Ridge Regression)多变量回归预测 (多输入单输出) Matlab回归
摘要:本文介绍基于KRR核岭回归的Matlab多变量回归预测程序,适用于多输入单输出场景。程序支持rbf、linear、poly等核函数切换,已调试完成可直接运行。采用FO工艺数据库,输入特征包括膜面积、流速、浓度等参数。KRR相比岭回归具有非线性拟合能力强、高维正则化效果好、模型灵活等优势。程序要求MATLAB 2018b以上版本,提供R2、MAE等多种评价指标及可视化结果,包含中文注释和测试数据集,适合新手使用。
2026-01-13 00:10:21
807
原创 基于(SVM-RFE-BP)支持向量机递归特征消除特征选择算法结合BP神经网络多变量回归预测(多输入单输出)
摘要:该程序采用SVM-RFE-BP算法实现多变量回归预测,通过支持向量机递归特征消除进行特征选择后,结合BP神经网络进行预测。更新后采用6+6可视化模式展示结果(6个误差分析图+6个统计分布图),并附带详细解释文档。程序已调试完成,支持Excel格式数据,适用于FO工艺数据库分析(输入特征包括膜面积、流速等参数)。运行环境需MATLAB 2018b及以上版本,提供R2、MAE等多种评价指标。代码注释清晰,附带测试数据集,适合新手直接使用。
2026-01-07 23:38:02
167
原创 基于1D-CNN的数据多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于1D-CNN的多变量回归预测MATLAB程序,可直接用于FO工艺数据分析。程序支持多输入单输出预测,输入特征包括膜面积、流速、浓度等参数。该代码已在2018b及以上MATLAB环境调试完成,提供R2、MAE等多项评价指标及可视化结果。程序包含详细中文注释和测试数据集,适合初学者直接使用,只需替换Excel格式数据即可运行。文末附有代码获取方式。
2026-01-07 23:36:57
297
原创 (加交叉验证)基于GPR的数据多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于高斯过程回归(GPR)的多变量回归预测MATLAB程序,适用于多输入单输出数据建模。程序采用5折交叉验证(可调),使用FO工艺数据库(膜面积、流速、浓度等特征),输出R2、MAE等多项评估指标,并自动生成可视化结果图。代码已调试完成,附带测试数据集,支持Excel格式数据直接替换使用。运行环境要求MATLAB 2018b及以上版本,代码含中文注释,适合初学者快速上手应用。
2026-01-07 23:36:09
213
原创 Matlab 基于蚁群算法优化高斯过程回归(ACO-GPR)的数据多变量回归预测+交叉验证 (多输入单输出)
摘要:该Matlab程序基于蚁群算法优化高斯过程回归(ACO-GPR),实现多变量回归预测并采用5折交叉验证(可调)。程序支持多输入单输出,评价指标包括RMSE、R2等7项,可有效抑制过拟合。代码已调试完成,替换Excel数据集即可运行,适用于Matlab2018b及以上版本。程序提供中文注释和测试数据集,适合新手使用。运行结果可视化展示丰富,还可根据需求定制其他优化算法。
2026-01-07 23:34:11
254
原创 Matlab 基于蜣螂算法优化高斯过程回归(DBO-GPR)的数据多变量回归预测+交叉验证 (多输入单输出)
摘要:Matlab基于蜣螂算法优化高斯过程回归(DBO-GPR)实现多变量回归预测,支持5折交叉验证(可调),有效抑制过拟合。程序已调试完成,可直接替换Excel数据集运行。评价指标包含RMSE、R2等7项,支持定制其他优化算法。运行环境要求MATLAB2018b及以上,代码含中文注释,附赠测试数据集,适合新手使用。
2026-01-07 23:31:32
223
原创 [原创]基于VMD-SE-LSTM+Transformer多变量时序预测 Matlab代码
摘要:本文介绍了一种基于变分模态分解(VMD)、样本熵(SE)和混合神经网络(LSTM+Transformer)的多变量时序预测方法。该方法通过VMD-SE对输出数据进行分解,将分量划分为高频和低频部分,分别采用LSTM和Transformer模型进行建模。程序采用北半球光伏功率数据测试,包含完整评价指标(R2、MAE等)和可视化结果。代码已调试完毕,附带中文注释和测试数据集,适合MATLAB 2023b及以上版本运行,可直接替换数据进行预测应用。
2026-01-07 23:30:04
861
原创 [独家原创]CPO-VMD-KPCA-CPO-LSTM单变量时序预测 (单输入单输出) matlab代码
本文介绍了一种基于CPO-VMD-KPCA-CPO-LSTM的单变量时序预测方法。该方法采用冠豪猪算法(CPO)优化变分模态分解(VMD)和长短期记忆网络(LSTM),结合核主成分分析(KPCA)进行降维处理。代码在Matlab2020b及以上环境运行,通过风速数据测试,提供RMSE、R2、MAPE等多项评价指标,并采用6+6模式实现结果可视化。该CPO算法为2024年新发表的中科院1区SCI成果,具有创新性。代码包含详细中文注释,附带测试数据集,适合新手直接使用。
2026-01-07 23:28:59
340
原创 基于贝叶斯算法优化BP神经网络(BO-BP/Bayes-BP)的数据单变量时序预测 Matlab
摘要:本文提供基于贝叶斯算法优化BP神经网络的单变量时序预测Matlab代码,适用于电力数据预测。程序已调试完成,可直接替换Excel数据集运行,优化参数为隐藏层神经元个数和学习率。运行环境要求MATLAB 2018b及以上版本,提供R2、MAE、MSE等多种评价指标及可视化结果。代码含中文注释,附带测试数据集,适合新手使用。获取方式详见文末。
2026-01-07 23:27:06
229
基于KELM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
2025-06-24
基于LSTM多变量时序预测免费(Matlab完整代码+数据)
2024-08-14
基于RF多变量时序预测(Matlab完整代码+数据)
2024-08-14
免费基于CNN多变量时序预测(Matlab完整代码+数据)
2024-08-14
基于RBF回归预测免费(Matlab完整代码+数据)
2024-08-14
基于PSO-SVM的数据回归预测(附带Matlab完整代码)
2024-08-09
基于PSO-SVM的数据分类预测(附带免费的Matlab完整代码)
2024-08-08
基于PSO-BP的数据分类预测(附带免费的Matlab完整代码)
2024-08-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅