终于懂了困扰许久的静电屏蔽原理的解释(高中生推荐阅读)

打高中学习静电屏蔽以来,对于静电屏蔽中有关空腔导体类问题始终存在困惑,高中阶段老师讲这一块知识的时候都是匆匆提一下,更多的是直接讲结论而没有详细讲解其中原理,老师也不过多解释(更多的像是解释不通),而网上能搜索到的讲解也都没有对此类问题原理的详细解释,以至于对这个问题不了了之了,现在上大学学习《大学物理》又再一次遇到它了🙁,但这一次在大学物理知识的解释下,以及大学老师的解答下,对此可以给出让人豁然开朗的解释了👏

  1. 首先,在我们学静电屏蔽前都会先学习静电平衡,对静电平衡的解释是:导体中的电荷处于稳定状态一般我们讲静电平衡时会用来描述如图静电感应现象:导体在外界电场的作用下,内部电荷开始移动,而移动后重新分布的电荷往往会在导体中产生与外界电场反向的感应电场,大家可以想象当外界电场强度大于内部反向的感应电场强度时,导体内的电荷所受的合场强仍是与外界场强放向一致(也可以说是被内部的感应电场抵消了一部分的外界场强),那么导体内电荷仍会继续移动,内部因电荷移动而产生的反向感应电场强度会不断增大,直到等于外界场强时,内外场强完全抵消,内部电荷所受合场强为零,也就不会有电荷的移动了,这时也就可以说  导体达到静电平衡状态b6a66883bd4e4655beb4b7f04cff83e2.png
  2.  要讲后面的内容我们需要先知道一个知识——高斯定理。这个定理是在大学才学的,但要解释清楚疑问必须要用到它(大家只用看加粗的黑体字),他的主要内容是:
    c7c472f0ef754508aa9411bcd76d7f19.png这里大家不必知道它的证明(感兴趣可以去百度详细了解其证明),只用知道这个公式,简单来说就是空间内任意作一闭合曲面,通过该曲面的合电通量为闭合曲面内部所有电荷代数和(意思是可以正负抵消的)的1/ε₀倍。而闭合曲面外部的电荷对该曲面的合电通量一定为零。 所以在后面我们分析某个闭合曲面上的合场强时,只用考虑其内部总电荷代数和。
  3. 好的,那么接下来我们要解释的是带空腔的导体的静电感应现象。68888fd577e04eac8e315b2bc780aa6d.png当我们拿到一个这样的导体,在其周围加上外加电场,会发生什么现象呢?
    根据上面第一点所讲的静电平衡,我们会知道,空腔导体内部电荷会不断移动产生反向的感应电场,直到完全抵消外界电场在导体内部的场强,达到静电平衡状态,所以此时导体内部各处场强应该处处为零,如果内部还有电场那导体内部的某一点的电荷会受到电场力而移动,也即还未达到静电平衡,就会继续移动至静电平衡状态。

    现在我们其实是只知道导体内部场强为零,并不知道导体中电荷的分布的,那我们是怎么知道的呢?这就需要用到高斯定理了,现在利用高斯定理,在空腔导体内任意作一包围内腔的闭合曲面 S (通常我们把这个面叫做高斯面),现在我们来分析曲面S上的各点,由于我们知道导体内各点场强为零,那么S上各点的场强也都是零咯,那么是不是曲面S上的合电通量也是零啦,那么由高斯定理公式就可以知道曲面内的电荷代数和零!acb7c8b875b545c8b9386302bdc52935.png那么接下来就有两种解了,一种是曲面内就是不带电,没有电荷,另一种就是内部有等量的正负电荷,合起来代数和为零。现在告诉你事实是第一种情况,内部不会带电,那怎么证明呢?我们可以通过证明第二种情况的错误来证明只可能是第一种情况,我先给大家看看课本上的解释,其实我不太能理解课本上的这个解释,后面我会给出我的疑惑及我自己的理解证明
    86bdb9bd9cf24565b2dedb1c674f8005.png紧接上文的两个解的问题,我们现在来假设第二种情况曲面内有等量异种电荷,那么我们需要再考虑一下曲面内异种电荷的分布,首先可以确认它至少不会在内表面以外的导体内部,因为用高斯定理作一个闭合曲面围住我们假设体内有的电荷那么就面上电通量就不为零,也就说明面上一定会有某点场强不为零,与静电平衡矛盾,所以电荷最多分布在内表面。接着有关我对课本上的解释不理解的原因是,因为我觉得对于如图内表面出现正负电荷的情况下,好似这样分布也可以使得导体内部场强为零达到静电平衡,在大致这样的电荷分布情况下或许是可以实现静电平衡的,在这种情况下导体中合场强都处处为零了的话就不会有电势差了啊,但之前我没法证明它不对,现在我想到了个较合理的解释,但是在我介绍我的解释前我想在此情况下讨论两种内表面形状情形,一种是上述图片中内表面是类似球面的曲面;一种是内表面是方形或反凹形的;下面是我自己对这种现象的证明:我们知道实现静电平衡,一定会经历一个过程,即在给导体外加电场那一刻起,导体内电荷开始移动,并移动至静电平衡状态的过程,既然有过程,我们不妨逐帧分析该过程,开始导体内感应出部分感应电场来抵消外加的电场,但该过程中在实现最终静电平衡前,导体内的正负电荷都还会进行向两端的移动,那么按照第二种的假设,内表面上有电荷的话,它一定会在静电平衡前一直受到移动的力,那么在静电平衡过程完成99%时是不是还是如此,99.9999%是不是也还是这种情形。极限下去其实就是内表面始终不会出现电荷。

    此外需要补充一点,大家可能对于内表面是球面类似面时,内表面上的电荷受力移动更好理解,因为不会有东西挡住它,但是就算内表面长成上述方形或反凹形时,我们假设的内表面电荷也是会移动的,因为在内部开始出现感应电场时的过程中,内部的电场不可能是呈现始终垂直内表面的,也就一定会出现使我们假设的内表面上的电荷移动到两端,而不会固定在内表面上,也即内部是不会有电荷的,没有电荷,用高斯定理就能说明也没有电场,就此证毕。
  4.  接着讲最后一个解释,也是我找了好久也没有得到答案的问题,最后在老师那得到答案,就是有关如图静电屏蔽的问题,在书上的解释下,我们会知道空腔内表面会带上与空腔内等量的负电荷,并且空腔内正电荷和内表面负电荷一起对导体外部将不会有电场,也就是我们说的静电屏蔽,按照书上的解释,我们通过静电平衡及高斯定理可以知道内表面一定要带有与腔内电荷等量异种的,这样我们作的围住空腔的闭合曲面S内电荷代数和才为零,S表面也才能没有场强,也才能解释导体内的静电平衡,但是书上解释是说因为二者电荷代数合为零,所以作任意大的闭合曲面S,曲面包围住了整个导体,即曲面在导体外部,这时确实还是能说明曲面上电通量为零,但是我不能说因为它的电通量为零,它的表面就处处场强为零,因为可以是某处电场线穿出曲面电场强度为正,另一处电场线传入曲面电场强度为负,合场强仍为零,对此呢,我的大学物理老师说的是,确实是有两种情况,我们也不能直接理论上证明某一种是对另一种是错,而是通过相应的实验现象证明验证,确认确实是对外场强为零,而不是有正又有负。
    其实听到物理老师的解释后,我才想起来物理是一个与实验紧密联系的学科啊,只是我没做过什么实验而忘记了  实验现象在理论证明中的作用了。
  5. 以上就是我想分享的解释,因为这些都是我自己思考了很久,网上也找了很多资料、视频但都没看都相应的能解释我疑惑的回答,现在在自己终于弄清楚后,就决定写这么篇文章来帮助那些与我有同样疑惑,但也找不到相应解答的朋友们。

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值