公理:
基本定理:
交换律,结合律自不必说,分配律你见过吗?:
好像把与变成或,或变成与对等式不影响?没错,这叫对偶式:
注意不要改优先级。可以用括号。
还有更多律。也符合上面的规律。
消除率的证明:
还有好多规律:
证明:
德摩根定律:给整个式子加上一个非,把A变成A拔(非A),把与变或,或变与,式子值不变。
用电路就是这样:
注意:德尔根和对偶式可不一样啊。 对偶式是两边都是逻辑式,取对偶(只改逻辑,不变A)后产生的新的等式也是对的。而摩根士原本只有一个式子最后面加了个非,把非放进去后产生的式子还是和原来那个前面都不非最后加一个非的相等。
代数化简:
最重要的三个律: