计算方法 8.常微分方程

这篇博客介绍了常微分方程的数值解法,重点讲解了差分方程的概念和线性多步法的原理。线性多步法通过考虑多个前缀点来提高精度,包括欧拉法作为特例。文章还探讨了误差积累、解的阶与系数的关系,并提到了泰勒展开在构造方法中的应用。此外,还讨论了数值积分、显式和隐式方法以及导数近似方法。线性多步法的收敛性也被分析。
摘要由CSDN通过智能技术生成

常微分方程是干嘛的?:

 

先学习基本概念:

解析法当然是有的,但我们不用。我们把微分方程改成成差分方程,这样好算。

现在我们来学习具体方法:

h就是xn+1-xn。

由于泰勒展开只占了一项,相当于把一小部分视为直线。 因此非常好算。

相信你也可以猜到,这个方法的误差好像是会越积越多的:

新方法:线性多步法:

简单来讲,这个公式就是要考虑p+1个n+1之前的点。前半部分就是要把前p+1个点的函数值乘上系数加起来,后面就是前p+1个点的导数和现在的第n+1点的倒数乘上系数加起来(不要忘记还要乘以h),感觉就像是加强版的欧拉法,考虑的不止前一个点。相应的,欧拉法也就是只考虑前一个点的线性多步法,只要一个初始值,相当于p=0(还要b-1=0)

6.1.1的解就是准确解。欧拉是线性的方法,当然是标准的1阶。

线性多步法的阶和系数的关系:

看得眼花缭乱,这里是老师的计算过程:

就是把三个y都泰勒展开了,把这些回代,就是上面的公式。q有多大取决于你展开了多少项。

基于泰勒展开的构造方法:

可以看到r(也就是你要通过这个方法计算多高次数的方程)会影响到底有没有解。超过2p+2了就没有,等于2p+2就有一个,小于2p+2就更好办了,可以有多个解,系数更加自由。

待定系数法就是通过p等于几得出yn+1的公式,看到有哪些未知的系数,然后通过r=2p+2来看出有哪些误差数是0,列出方程组解出系数。

我们也可以不依赖泰勒展开,可以用数值积分:

 

 

这个方法因为没有使用第n+1点,所以是显示方法。接下来是隐式方法:

 

 

还有导数近似方法:

 

线性多步法的收敛性:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值