第十三讲:常微分方程

概念

微分方程的解是一个函数,微分方程可以含有微分,一阶或者高阶导数。未知数是一元函数的称为常微分方程,微分方程的未知数函数最高阶数n称为方程的阶,方程的阶数和方程的通解的未知数个数相等(因为要求出原函数必须求积分n次,每次求积分都会出现一个未知常数C),,方程的初始条件通常会给定 y ( x 0 ) = A , y ′ ( x 0 ) = A 1 . . . . . . y n ( x 0 ) = A n y(x_0)=A,y'(x_0)=A_1......y^{n}(x_0)=A_n y(x0)=A,y(x0)=A1......yn(x0)=An,每次给出一个就可以解出一个未知常数,对于解的结构,常微分非齐次方程的解=齐次方程的通解+一个特解(这个概念其实在线性代数里也出现过,很好理解,通解部分的运算结果得0,不会影响特解的结果,特解本身就是符合方程的,所以合理),由于括号里的性质易得,齐次部分相同的两个二阶非齐次方程的特解相加,也是两个非齐次部分拼成的新方程的特解。

方程类型

可分离变量型

d y d x = f ( x ) g ( y ) = = > ∫ d y g ( y ) = ∫ f ( x ) d x \frac{dy}{dx}=f(x)g(y) ==> \int \frac {dy}{g(y)}=\int f(x)dx dxdy=f(x)g(y)==>g(y)dy=f(x)dx
分离变量然后两边同时积分即可,最好写出显示解y=f(x)+C(每次积分常数不要漏掉).

可化为分离变量型 (换元法)

  • d y d x = f ( a x + b y + c ) = f ( u ) \frac{dy}{dx}=f(ax+by+c)=f(u) dxdy=f(ax+by+c)=f(u)
    d u d x = a + b d y d x \frac{du}{dx}=a+b\frac{dy}{dx} dxdu=a+bdxdy

  • d y d x = φ ( y x ) = φ ( u ) \frac{dy}{dx}=φ(\frac yx)=φ(u) dxdy=φ(xy)=φ(u)
    d y d x = d ( u x ) d x = x d u + u d x d x = x d u d x + u \frac{dy}{dx}=\frac{d(ux)}{dx}=\frac{xdu+udx}{dx}=x\frac{du}{dx}+u dxdy=dxd(ux)=dxxdu+udx=xdxdu+u

一阶线性微分方程

  • y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x)
    y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x q ( x ) d x + C ] y=e^{-\int p(x)dx}[\int e^{\int p(x)dx}q(x) dx+C] y=ep(x)dx[ep(x)dxq(x)dx+C]
    推导:
    y ′ + p ( x ) y y'+p(x)y y+p(x)y可以写成 e − ∫ p ( x ) d x ∗ [ y e ∫ p ( x ) d x ] ′ e^{-\int p(x)dx}*[ye^{\int p(x)dx}]' ep(x)dx[yep(x)dx],将未知函数y分离出来就可以得到上面的式子,两边同时积分时,记得加上常数C。
    补充:p(x)=ln|φ(x)|时,求解x时可以不加绝对值,否则都加。

  • y ′ + p ( x ) y = q ( x ) y n y'+p(x)y=q(x)y^{n} y+p(x)y=q(x)yn(伯努利方程)
    换元法,两边同除以 y n y^{n} yn,令 z = y 1 − n z=y^{1-n} z=y1n, d z d x = ( 1 − n ) ∗ y − n d y d x \frac {dz}{dx}=(1-n)*y^{-n}\frac {dy}{dx} dxdz=(1n)yndxdy,式子变为 1 1 − n d z d x + p ( x ) z = q ( x ) \frac 1{1-n}\frac{dz}{dx}+p(x)z=q(x) 1n1dxdz+p(x)z=q(x),之后按照一阶常微分方程解出得数即可。

二阶可降阶微分方程

  • y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)
    由于没有未知函数y,直接把y’看成未知函数用一阶方程的解法来解即可,解出y‘后再用一阶方程的解法解一次,解两次一阶方程就可以解出来y函数,注意由于积分了两次这个方程会有两个未知数C1,C2。

  • y ′ ′ = f ( y , y ′ ) y''=f(y,y') y=f(y,y)

    y ′ = p , y ′ ′ = d p d y ∗ d y d x = d p d y ∗ p y'=p,y''=\frac{dp}{dy}*\frac{dy}{dx}=\frac{dp}{dy}*p y=p,y=dydpdxdy=dydpp,分离变量再积分求出p的方程(记得别漏写常数C1),然后 p = d y d x p=\frac{dy}{dx} p=dxdy分离变量再积分求出y的方程,记得此时要添加常数C2.

高阶线性微分方程

二阶常系数齐次

  • y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0(p,q为常数)
    该方程判别式: △ = p 2 − 4 q △=p^2-4q =p24q,特征值为λ1,λ2。通解为y。
    1. △ > 0 , y = C 1 e λ 1 x + C 2 e λ 2 x △>0,y=C_1e^{λ_1x}+C_2e^{λ_2x} >0,y=C1eλ1x+C2eλ2x
    2. △ = 0 , y = ( C 1 + C 2 x ) e λ x △=0,y=(C_1+C_2x)e^{λx} =0,y=(C1+C2x)eλx
    3. △ < 0 , y = e α x ( C 1 c o s β x + C 2 s i n β x ) , ( α ± β i 是 复 数 特 征 根 ) △<0,y=e^{αx}(C_1cosβx+C_2sinβx),(α±βi是复数特征根) <0,y=eαx(C1cosβx+C2sinβx),(α±βi)
      注意:C1,C2在给定初始条件(函数在某点的值)的情况下可以解出。

二阶常系数非齐次

齐次方程的通解+非齐次的特解=非齐次通解

P n ( x ) , P m ( x ) P_n(x),P_m(x) Pn(x),Pm(x)为x的n次和m次多项式。

  • y ′ ′ + p y ′ + q y = e α x P n ( x ) y''+py'+qy=e^{αx}P_n(x) y+py+qy=eαxPn(x)
    设特解 y ∗ = e α x Q n ( x ) x k y^*=e^{αx}Q_n(x)x^k y=eαxQn(x)xk

    1. e α x e^{αx} eαx照抄
    2. Q n ( x ) Q_n(x) Qn(x)为n次x的多项式
    3. k = ( α = = λ 1 ) + ( α = = λ 2 ) k=(α==λ_1)+(α==λ_2) k=(α==λ1)+(α==λ2)
      注意:Qn(x)中的多项式系数要把特解带入原方程去解出来。
  • y ′ ′ + p y ′ + q y = e α x [ P n ( x ) c o s β x + P m ( x ) s i n β x ] y''+py'+qy=e^{αx}[P_n(x)cosβx+P_m(x)sinβx] y+py+qy=eαx[Pn(x)cosβx+Pm(x)sinβx]
    设特解 y ∗ = e α x [ Q l 1 ( x ) c o s β x + Q l 2 ( x ) s i n β x ] x k y^*=e^{αx}[Q^{1}_l(x)cosβx+Q^{2}_l(x)sinβx]x^k y=eαx[Ql1(x)cosβx+Ql2(x)sinβx]xk

    1. e α x e^{αx} eαx照抄
    2. l = m a x ( n , m ) , Q 1 Q 2 l=max(n,m),Q^1Q^2 l=max(n,m),Q1Q2为两个系数不同的L次x的多项式
    3. k = ( α ± β i = = λ 1 ) ∣ ∣ ( α ± β i = = λ 2 ) k=(α±βi==λ_1)||(α±βi==λ_2) k=(α±βi==λ1)(α±βi==λ2)
      注意:Q1(x),Q2(x)中的多项式系数要把特解带入原方程去解出来。
  • 欧拉方程

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值