目前学到了73页
凸函数的定义:
人话:函数f的定义域是凸集(在一般的情况下就是不能是断开的定义域(一般的情况是1维的嘛),假如x是什么多维向量的话就是说x的取值范围是一个凸集内),并且还满足3.1式子,那么这个函数就叫凸函数。
一般来说凸函数都长这个样子:
毕竟在3.1式子中可以看到右边的式子其实就是x,y之间的凸集(也就是它们之间的线段)而左边是实际的函数值,函数值要小当然就长这样了。
简单来说就是这个函数正好倒过来就叫凹函数。这两种在实际使用的时候没啥区别,加个符号的事。
严格凸就是要排除掉直线之类的情况。
扩展值延伸:
为了避免和之前的定义冲突,直接把外面的部分定义成无穷,这样肯定是凸的。这样省的每次都要讲一下定义域。在实际使用的时候可以设置成一个特别大的数(只要保证原本定义域内的值不可能超过它就行),这样怎样都是凸的。
同理凹函数的延申就是加-无穷
可微情况下的凸函数定义:
如果二阶可微那更好:
这里学到78页了。
还有第四个定义:
其实就是二次导大于等于零,只是这里考虑到函数可能是有多个自变量的情况。
注意:一个函数是凸函数的前提就是定义域要是凸的,中间空了个点啥的那就无力回天了。
上面是范数的定义,这是一个很宽泛的定义,和平时的理解不同。
注意:零范数(表示xi中非零元素的个数)不是范数,也不是凸函数。
这里的Rn都是把这个函数需要的n个自变量打包到一起(像一个向量一样)组成的。所以ax就是把所有x一起乘一个a的意思。
保凸运算
1:非负加权和:f1,f2……等是凸函数,则对于任意wi>=0,有f=w1*f1+w2*f2……均为凸函数。
2:若f(x,y)对于任意y属于A,f(x,y)均凸(就是说y给定了,只以x为自变量,这个函数就是凸的)。设w(y)>=0,对任意y属于A,有g(x)=(y属于A) w(y)*f(x,y)dy 为凸函数
3:仿射映射:f:Rn-->R,A属于Rn*m,b属于Rm。定义g:Rm-->R为g(x)=f(Ax+b)其中dom(g) = {x|Ax+b属于dom(f)}若f为凸,则g为凸。
4:逐点最大函数:
这个就叫做逐点最大保凸。
举个例子:
sup代表上确界。g(x)=sup f(x,y)代表以x为自变量的一个函数,这个函数的值是在x确定的情况下,y任意取值(当然不能超过A的范围)所可以达到的,f函数值的上界。可以想象这个函数就是在f(x,0),f(x,0.001)……等无限个函数中选择最大的那个,因此只需要上面的结论就知道g(x)是凸的。
接下来考虑一下复合函数。
可以这么记:复合函数的凹凸性首先要看h是什么,然后看后面的是不是能保持原来h的性质。如果是单增的(好记),那么就要选择和h一样的来保持,如果是单减的,就要用和h相反的来保持。
这里讲到了91页
函数的共轭
f*(y)就是在y给定的情况下yx与f(x)之间的最大差值。y是一个随便取的向量,因此yx可以组成一个过原点的线性函数(可以用三位的情形想象一下,yx就是一个平面)(上图其实有点迷惑性,注意yx是过原点的)
一些性质:
1.若f(x)可微,则f*(y)对应的x一定是f'(x)=y的点(求个导就证到了)
2.函数的共轭一定是凸函数
减回去了呗。
下水平集与拟凸函数
f(x)<=a的x的范围就叫做f(x)对a的下水平集。凸函数的下水平集也都是凸集,但下水平集都是凸集的不见得是凸函数。
从下水平集,我们可以得到拟凸函数的定义:
它其实不凸,但是只要不当场造反(走势直接发生变化之类的)就可以
拟凸函数的性质
凸函数当然也有这个性质且更强。
要么一直减,要么一直增,要么一段减一段增且就这两段。
拟凸函数还有第三个定义(另一个性质):
其实就是之前那个性质的变体。当然仅限于可微函数。
注意,在拟凸函数中,f'(x)=0≠x是全局最小点,这和凸函数是不一样的。
类似于凸函数,拟凸函数也有二阶条件:
简单来讲,就是要把握斜率为0的那个点,这个点决定着拟凸函数的性质,只要在这个点装一下(二次导大于0 cos凸函数)那就可以成为拟凸函数。
的他方f(x)大于等于零就是之前凸函数那里提到的hessian阵。这个阵对于求多元函数的导数很重要。当时凸函数那里要确保所有点带进去都要大于等于零,因此要求hessian阵要是半正定的。这里只要求特定的点。
对数凸函数与对数凹函数
对数凸就是即使取了对数也一样是凸函数的函数。
原本是加权加的,这下变成次数乘了。
对数凸函数就是凸函数(可以用复合函数证明),但凸函数不一定是对数凸;非负凹函数(负了那就去不了对数了)是对数凹函数,但对数凹不一定是凹函数。
这里学到了133页