晶圆表面缺陷的类型与检测技术

系列文章目录

1.晶圆的制造过程与晶圆的参数

2.晶圆尺寸特征参数与影响

3.晶圆表面缺陷的类型与检测技术


文章目录

        本文主要对晶圆的缺陷类型及检测进行简单介绍。


一、晶圆表面缺陷概述

        晶圆作为半导体制造的基石,其重要性不言而喻。从单晶硅的制造过程来看,从晶碇生长,到切片抛光,再到清洁运输,而后走向前后道的工艺,最终形成芯片,中间过程中,由于晶圆本身的晶相、中间过程的机械作用、化学药液的腐蚀、环控的颗粒残留等等,都可能产生表面缺陷。

图1:抛光片制造过程,来源:芯片制造全过程-晶片制作[1]

        晶圆表面缺陷对芯片性能有着重大影响。晶圆表面缺陷包括划痕、裂纹、小凹坑、颗粒和表面污染等,这些缺陷会影响芯片制造及最终产品性能。例如,颗粒在光刻时会遮挡光线,造成集成电路结构上的缺陷;污染物可能会附着在晶圆表面,造成图案的不完整,影响芯片的电气特性。层间缺陷如金属线层、绝缘层等的缺陷,可能导致短路、漏电等问题,影响芯片功能。芯片结构缺陷包括晶体管尺寸不匹配、掺杂不均匀、沟槽深度不一致等,会导致电特性偏差。

        因此,对晶圆表面缺陷进行检测是非常必要的。通过检测,可以及时发现并修复制造过程中的缺陷,提高产品良品率。

二、晶圆表面缺陷类型

1.颗粒缺陷

        颗粒污染缺陷:主要包括纳米级微小颗粒、微米级灰尘及残留物,可能遮挡光线或造成图案不完整。据相关数据显示,晶圆表面的冗余物小到几十纳米的微小颗粒,大到几百微米的灰尘。这些颗粒可能来自刻蚀、抛光、清洗等工序,也可能是由于生产加工中晶圆表面的灰尘、空气纯净度未到达标准以及加工过程中化学试剂等原因产生。颗粒在光刻时会遮挡光线,造成集成电路结构上的缺陷,例如桥连等图形缺陷,影响芯片的性能。在SEM图示下,颗粒污染如下所示:

图2:晶圆表面颗粒,来源:去除晶圆表面颗粒的方法[2]

2.划痕缺陷

        划痕缺陷:多发生在预光刻阶段,由机器故障引起,影响芯片制造及最终产品性能。划痕一般是由化学机械研磨等工序造成,呈不规则形状,长度和深度各异。这种缺陷可能会破坏晶圆表面的平整度,影响后续工艺的进行。例如,在光刻过程中,划痕可能导致光线散射,影响曝光的准确性,从而使芯片的图案出现偏差。或者存在局部缺陷,造成局部区域电性能异常。通常,划痕缺陷如下图所示:

图3:晶圆表面划痕,来源:机器视觉在半导体行业的光源应用[3]

3.气泡缺陷

        在晶圆的制造过程中,尤其是涂胶和曝光环节,可能会出现气体被封 trapped 的现象。这些气体在后续的固化过程或者其它工艺步骤中释放出来,形成气泡;或者使用的光刻胶或其他材料中如果存在不均匀性,可能导致气泡的形成。例如,溶剂的挥发速度不一致,就可能在干燥过程中产生气泡。气泡的存在容易导致电性接触不良,影响器件的开关特性和工作稳定性。也可能可能导致晶圆在后续的测试和封装环节中出现大量失效,降低整体的良率。

4.裂纹和断裂

        在晶圆制造过程中,晶圆会经历多个工序,包括高温退火、化学腐蚀和薄膜沉积等。这些工序可能导致材料的热膨胀不匹配,从而在晶圆表面产生应力,引发裂纹。或者晶圆材料中的微小缺陷,如夹杂物、晶格缺陷等,可能成为裂纹的起始点。这些缺陷会在后续加工过程中被放大。裂纹和断裂会降低集成电路的性能,可能导致信号传输不良或功率损耗增加。存在裂纹和断裂的晶圆将无法满足良率标准,增加了生产成本。

5.晶格缺陷

        晶格缺陷是指晶体结构中与理想排列不符的部分,常提到的有点缺陷、面缺陷等,此处不再过多展开。

图3:晶格点缺陷,来源:晶格缺陷和晶格缺陷的区别[4]

        这些缺陷对半导体的电子性能、导电性及光电性能会产生显著影响。例如,较多的空位缺陷可能会导致载流子的复合率增加,从而降低半导体的有效电导率。

        除了上述缺陷外,例如制造过程中如化学残留物导致的缺陷、由于薄膜厚度的不均匀性导致的电气性能差异、在氧化过程中的缺陷等等,暂不做说明。

三、晶圆表面缺陷检测技术

1.传统检测方法

        对于晶圆表面缺陷而言,存在各种检测方式,如下所示:

        1.光学检验:使用光学显微镜和自动化光学检测系统(AOI)来检查晶圆表面的缺陷,包括划痕、污垢和其他可见缺陷。

        2.电子显微镜:采用扫描电子显微镜(SEM/CDSEM)进行高分辨率成像,可以检测到更微小的缺陷,例如颗粒、纳米级裂纹等。

        3.X射线检测:通过X射线成像,检测晶圆内部和表面的缺陷,适合用于分析三维结构和内部缺陷。

        4.激光扫描:使用激光扫描系统,可以快速扫描晶圆表面,检测凹陷、凸起以及其他形态变化。

        5.表面轮廓仪:利用表面轮廓仪测量晶圆表面的高度变化,以确定表面质量和缺陷情况。

        6.缺陷归类软件:结合图像处理技术,对检测到的缺陷进行分类和分析,可以帮助提高缺陷检测的效率。

        7.电性能测试:对于晶圆上集成电路的电性能进行测试,以发现功能性缺陷,这种方法常常与其他物理检测方法结合使用。

2.基于机器学习的检测方法

        从人工智能广泛用于各行各业开始,传统的检测行业也引入了基于机器学习或更进一步基于深度学习的检测方式。

        1.监督学习:在目标检测领域具有较高鲁棒性,如 KNN 系列、决策树 - Radon、SVM 等算法,但存在复杂度高、过拟合等局限。

        2.无监督学习:不需要大量人力标记数据样本,根据样本特征关系聚类,对未知缺陷和早期工艺开发有优势,但也有样本密度不均或收敛时间长等问题。晶圆图案上的缺陷图案分类不均匀,特征不规则,无监督聚类算法对这种情况具有很强的鲁棒性,广泛用于检测复杂的晶圆缺陷图案。

        3.半监督学习:结合监督集成学习与无监督 SOM,通过主动学习和标记样本增强模型性能。半监督学习开辟了新的解决方案,将监督集成学习与无监督 SOM 相结合,构建了半监督模型。通过主动学习和标记样本来增强模型性能,从而提高模型性能。


总结

        晶圆是半导体制造的基础,其表面缺陷可能在制造过程中产生,包括划痕、裂纹、凹坑、颗粒和表面污染等,这些缺陷会影响芯片的性能和良品率。通过如光学检验、电子显微镜、X射线检测、激光扫描、表面轮廓仪和电性能测试,或者基于机器学习的方法,如监督学习、无监督学习和半监督学习,可以对缺陷进行有效检测,这有助于及时发现和修复制造过程中的缺陷,提高产品良品率。如对以上内容有进一步了解的需求,可以留言分享一些参考资料~


参考资料

  1. 芯片制造全过程-晶片制作(图示)-CSDN博客
  2. 去除晶圆表面颗粒的方法-华林科纳半导体
  3. 机器视觉在半导体行业的光源应用
  4. 晶格缺陷和晶格缺陷的区别_挂云帆

免责声明:

        本板块主要聚焦半导体相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源。所发布的文章或者引用的内容若存在版权等问题,请留言联系删除,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值