一种基于条件生成对抗网络(cGAN)的CT重建算法

简介

简介:该文提出了一种基于条件生成对抗网络(cGAN)的CT重建算法,通过引入CBAM注意力机制增强网络对关键特征的提取能力,有效解决了CT成像中因噪声干扰导致的重建精度下降问题。实验采用固体火箭发动机模拟件数据集,将正弦图分为五组并添加不同程度的噪声进行训练。结果表明,与传统FBP算法相比,该方法在噪声增加时仍能保持高质量重建,显著提升了图像清晰度和精度。研究验证了cGAN结合注意力机制在CT重建中的优越性能,为工业CT图像处理提供了新的解决方案。

论文题目:基于条件生成对抗网络的CT重建算法研究

期刊:河南科学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值