线性代数的正确引入

1、概述

本节主要介绍 线性代数 的基础。

首先从 解方程 开始,学习线性代数的应用之一就是求解复杂的方程问题,
本节核心之一就是从 row picture (行图像) 和 column picture (列图像) 的角度解方程。

2、方程组的几何解释基础

2.1、二维行图像

我们首先通过一个例子了解二维方程组,如下:

\begin{cases} 2x-y=0\\ -x+2y=3\\ \end{cases}

我们首先按 row (行) 将方程组写成矩阵形式:

\begin{bmatrix} 2&-1\\ -1&2 \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix}= \begin{bmatrix} 0\\ 3\\ \end{bmatrix}

系数矩阵(A): 将方程组系数按行提取出来,构造完成的一个矩阵。
未知向量(x): 将方程组的未知数提取出来,按列构成一个向量。
向量(b): 将等号右侧结果按列提取,构成一个向量。

AX=B

构造完成相应的矩阵形式了,我们将对应的 行图像 画出来。
所谓 行图像,就是在系数矩阵上,一次取一行 构成方程,在坐标系上做出如下图。和我们在初等数学中学习的作图求解方程的过程无异。

2.2、二维列图像

从列图像的角度,我们再次求解上面的方程:

\begin{cases} 2x-y=0\\ -x+2y=3\\ \end{cases}

在这一次的求解过程中,我们将方程按列提取,使用的矩阵为:

\begin{bmatrix} 2\\ -1 \end{bmatrix} +y \begin{bmatrix} -1\\ 2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 3\\ \end{bmatrix}

如上所示,我们使用 列向量 构成系数矩阵,将问题转化为: 利用系数x,y将向量 \begin{bmatrix}2\\-1\end{bmatrix}与向量 \begin{bmatrix}-1\\2\end{bmatrix},制造成向量\begin{bmatrix}0\\3\end{bmatrix}

接下来我们使用 列图像 将方程组展现出来,并求解:

即寻找合适的 x,y 使得 x 倍的 \begin{bmatrix}2\\-1\end{bmatrix}y 倍的\begin{bmatrix}-1\\2\end{bmatrix}得到最终的向量\begin{bmatrix}0\\3\end{bmatrix}。很明显能看出来,1 倍\begin{bmatrix}2\\-1\end{bmatrix}2 倍\begin{bmatrix}-1\\2\end{bmatrix}即满足条件。

反映在图像上,明显结果正确。

我们再想一下

x\begin{bmatrix} 2\\ -1 \end{bmatrix} +y \begin{bmatrix} -1\\ 2\\ \end{bmatrix}

如果我们任意取 x 和 y ,那么我们得到的是什么呢?很明显,能得到任意方向的向量,这些向量能够布满整个平面。这里我们先不做展开。这个思想就是线性代数的根本。

3、方程组扩展

3.1、三维行图像

我们将方程组的维数推广到三维

\begin{cases} 2x-y=0\\ -x+2y-z=-1\\ -3y+4z=4 \end{cases}

矩阵使方法简单化了,把方程组简化为矩阵的形式。
但是如果我们继续使用上面介绍的 做出行图像 来求解问题,那么会得到一个很复杂的图像。

矩阵如下:

A= \begin{bmatrix} 2&-1&0\\ -1&2&-1\\ -3&0&4\\ \end{bmatrix}

b= \begin{bmatrix} 0\\ -1\\ 4\\ \end{bmatrix}

对应方程:AX=b

\begin{bmatrix} 2&-1&0\\ -1&2&-1\\ -3&0&4\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}= \begin{bmatrix} 0\\ -1\\ 4\\ \end{bmatrix}

如果绘制行图像,很明显这是一个三个平面相交得到一点,我们想直接看出这个点的性质可谓是很难。比较靠谱的思路是先联立其中两个平面,使其相交于一条直线,再研究这条直线与平面相交于哪个点,最后得到点坐标即为方程的解。

这个求解过程对于三维来说或许还算合理,那四维呢?五维甚至更高维数呢?直观上很难直接绘制更高维数的图像,这种行图像受到的限制也越来越多

3.2、三维列图像

我们使用上面同样的例子

\begin{cases} 2x-y=0\\ -x+2y-z=-1\\ -3y+4z=4 \end{cases}

如果我们使用列图像的思路进行计算,那矩阵形式就变为:

x \begin{bmatrix} 2\\ -1\\ 0\\ \end{bmatrix}+ y \begin{bmatrix} -1\\ 2\\ -3\\ \end{bmatrix}+ z\begin{bmatrix} 0\\ -1\\ 4\\ \end{bmatrix}= \begin{bmatrix} 0\\ -1\\ 4\\ \end{bmatrix}

左侧是线性组合,右侧是系数x,y,z倍线性组合组成的结果,这样一来思路就清晰多了,“寻找线性组合”成为了解题关键。

很明显这道题是一个特例,我们只需要取 x = 0, y = 0, z = 1 就得到了结果,这在行图像之中并不明显。

当然,之所以我们更推荐使用 列图像 求解方程, 是因为这是一种更系统的求解方法,即 寻找线性组合,而不用绘制每个行方程的图像之后寻找那个很难看出来的点。

另外一个优势在于,如果我们改变最后的结果 b\begin{bmatrix}1\\1\\3\end{bmatrix}

x \begin{bmatrix} 2\\ -1\\ 0\\ \end{bmatrix}+ y \begin{bmatrix} -1\\ 2\\ -3\\ \end{bmatrix}+ z\begin{bmatrix} 0\\ -1\\ 4\\ \end{bmatrix}= \begin{bmatrix} 1\\ 1\\ 3\\ \end{bmatrix}

那么我们就重新寻找一个线性组合就够了。

但是如果我们使用的是行图像呢?那意味着我们要完全重画三个平面图像。

另外,还要注意的一点是对任意的 b 是不是都能求解 Ax = b 这个矩阵方程呢? 也就是对 3*3 的系数矩阵 A,其列的线性组合是不是都可以覆盖整个三维空间呢?对于我们举的这个例子来说,一定可以,还有我们上面 2*2 的那个例子,也可以覆盖整个平面,但是有一些矩阵就是不行的。

比如矩阵中第一列加上第二列等于第三列那三个列,这三个向量就构成了一个平面。

\begin{bmatrix} 2\\ -1\\ 0\\ \end{bmatrix}, \begin{bmatrix} -1\\ 2\\ -3\\ \end{bmatrix} ,\begin{bmatrix} 1\\ 1\\ -3\\ \end{bmatrix}

那么这样的三个向量组合成的向量只能活动在这个平面上,肯定无法覆盖一个三维空间,

如果有一个九维向量,它可以代表九维空间,但是恰好其中的第九维等于第八维,那么它对这个向量就是没有贡献的,那么这个组合就只能覆盖九维空间内的八维平面。最后的求解也只能在八维平面上展开。

3.3、矩阵乘以向量

AX=b

\begin{bmatrix} 2&5\\ 1&3\\ \end{bmatrix} \begin{bmatrix} 1\\ 2\\ \end{bmatrix} =1 \begin{bmatrix} 2\\ 1\\ \end{bmatrix}+2 \begin{bmatrix} 5\\ 3\\ \end{bmatrix} = \begin{bmatrix} 12\\ 7\\ \end{bmatrix}

4、小结

这部分内容主要是线性代数概念的初步了解,从解方程谈起,从行空间逐步过渡到列空间,可以发现从列空间角度将求解方程变化为求列向量的线性组合,这种方法更加科学。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值