干货|MIT线性代数课程精细笔记6-子空间与零空间

干货|MIT线性代数课程精细笔记6-子空间与零空间

MIT线性代数课程精细笔记[第六课]

前言

MIT线性代数课程精细笔记[第一课]笔记见MIT线性代数课程精细笔记1。

MIT线性代数课程精细笔记[第二课]笔记见MIT线性代数课程精细笔记2

MIT线性代数课程精细笔记[第三课]笔记见干货|MIT线性代数课程精细笔记3

MIT线性代数课程精细笔记[第四课]笔记见干货|MIT线性代数课程精细笔记4。

MIT线性代数课程精细笔记[第四课]笔记见干货|MIT线性代数课程精细笔记5

该笔记是连载笔记,希望对大家有帮助。

1

知识概要

本节从之前学习的子空间开始,介绍了子空间的部分性质。并重点介绍了列 空间与方程 Ax = b 之间的联系。并由此引出了零空间,根据 Ax = b 这个方程给 出了两种构建子空间的方法。

2

子空间

2.1 子空间回顾

很明显,子空间直线 L 或平面 P 上,任取两个向量相加,得到的向量仍在该 子空间中。而且将其上的向量做数乘伸长或缩短一定倍数,其结果也还在该子空 间中。所以它们都对线性运算封闭。

2.2 子空间的“交”与“并”

上面我们都是分别研究的两个子空间,那么接下来我们对两个空间之间联系 部分展开讨论

2.2.1 P∪L 空间

还是讨论上面𝑅 3 的子空间 P 与 L,首先要研究的就是它们的并空间,即:现 有一集合,包含了 P 与 L 中的所有向量,那么这个集合是子空间吗?

答案是否定的。

很明显,我们将直线 L 与平面 P 看做同一个集合 P∪L 之后,这个集合对线性 运算并不封闭。比如我们随便在直线 L 上取一个向量 a,在平面 P 上取一个向量 b。此时向量 a+b 方向就会夹在直线 L 与平面 P 之间,脱离了 P∪L 的范围。所以 P∪L 无法构成空间。

2.2.2 P∩L 空间

3

列空间

3.1 列空间回顾

那么这个子空间有多大呢?这就需要用 Ax = b 方程来解释了。

3.2 Ax = b 的空间解释(从 A 的角度)

4

零空间介绍

4.1 零空间介绍

4.2 Ax = b 的空间解释(从 x 的角度)

那如果上面构造零空间的方程右侧变为任意向量的话,其解集 x 还能构成 向量空间吗?

4

学习感悟

返回搜狐,查看更多

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值