第九章(8)多元函数的极值及求法

本文介绍了多元函数的极大值和极小值定义,并通过例题阐述了如何判断极值点。讲解了拉格朗日乘子法在求解条件极值问题中的应用,以及函数连续性和极值之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.  极大值的定义:

(1)已知函数 z=f(x,y) 的定义域为D 

(2)特定点 \small P_0 是D的内点,即是 \small P_0 \in D 且 \small P_0 \notin \partial D

(3)对于任何的 点(x,y), \small U(P_0)\ni (x,y) \neq (x_0,y_0) ,恒有 

                                        \small f(x,y)<f(x_0,y_0)  则\small f(x_0,y_0) 是极大值点。

类似地,

(1)已知函数 z=f(x,y) 的定义域为D 

(2)特定点 \small P_0 是D的内点,即是 \small P_0 \in D 且 \small P_0 \notin \partial D

(3)对于任何的 点(x,y), \small U(P_0)\ni (x,y) \neq (x_0,y_0) ,恒有 

                                        \small f(x,y)> f(x_0,y_0)  则\small f(x_0,y_0) 是极小值点。

按定义,进行极值分析 ,

一般从二元函数的几何图形着手进行分析 ,

例如

(1)函数 \small z=3x^2+4y^2 在点零零处有极小值 。因为对于(0,0)的任何邻域内异于(0,0)的点,函数值为正,而点(0,0)处的函数值为零。从几何上看这是显然的,因为点(0,0,0)是开口朝上的抛物面\small z=3x^2+4y^2的顶点。 

(2)结论:

凡是关于x,y 的二次多项式,而z是一次的,都和平面内的抛物线有关,事实上,只要令y=kx  (k为常数,取遍一切的实数) ,就可以得到空间中的一条抛物线 ,例如 函数 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值