1. 极大值的定义:
(1)已知函数
的定义域为D
(2)特定点
是D的内点,即是
且
(3)对于任何的 点(x,y),
,恒有
则
是极大值点。
类似地,
(1)已知函数
的定义域为D
(2)特定点
是D的内点,即是
且
(3)对于任何的 点(x,y),
,恒有
则
是极小值点。
按定义,进行极值分析 ,
一般从二元函数的几何图形着手进行分析 ,
例如
(1)函数
在点零零处有极小值 。因为对于(0,0)的任何邻域内异于(0,0)的点,函数值为正,而点(0,0)处的函数值为零。从几何上看这是显然的,因为点(0,0,0)是开口朝上的抛物面
的顶点。
(2)结论:
凡是关于x,y 的二次多项式,而z是一次的,都和平面内的抛物线有关,事实上,只要令y=kx (k为常数,取遍一切的实数) ,就可以得到空间中的一条抛物线 ,例如 函数
第九章(8)多元函数的极值及求法
最新推荐文章于 2024-04-06 12:06:48 发布