1. 曲顶柱体的体积:
规则柱体的体积公式:
.
想象在曲顶柱体的底面上任取一小块区域,记作:
(这一小块的面积也用
来表示),设曲顶柱体的顶面有函数
,取小闭区域上任一点作为小柱体的高,则小柱体的体积近视表示为
,取积分就得到柱体的体积
2.平面薄片的质量:
质量元素为:
3.二重积分的定义:
1. 函数
是定义在有界闭区域上D上的
2.函数
是有界函数 。
3.对积分区域的划分是用直线网来划分的 。
4.结论:有界闭区域D上的连续函数
的二重积分必定存在,即是定义中的极限必定存在。
5.曲顶柱体的体积:
![]()
平面包边的质量:
,其中u(x,y) 是薄片的面密度 ,所谓薄片就是单位厚度,理解为各种“1” ,例如:1CM,1M根据实际选取的量纲不同而不同 。
6.二重积分的几何意义:曲顶柱体的体积,
是曲顶柱体的 顶 在点
处的竖坐标。
6.1 如果