【高等数学】重积分

二重积分的概念与性质

一、二重积分的定义

f ( x , y ) f(x,y) f(x,y)是有界闭区域 D D D上的有界函数,将闭区域 D D D任意分成 n n n哥小闭区域 Δ σ 1 , Δ σ 2 , ⋯   , Δ σ n \Delta\sigma_1,\Delta\sigma_2,\cdots,\Delta\sigma_n Δσ1,Δσ2,,Δσn,其中 Δ σ i \Delta\sigma_i Δσi表示第 i i i个小闭区域,也表示它的面积,在每个 Δ σ i \Delta\sigma_i Δσi上任取一点 ( ξ i , η i ) Δ σ i ( i = 1 , 2 , 3 , ⋯   , n ) (\xi_i,\eta_i)\Delta\sigma_i\quad(i=1,2,3,\cdots,n) (ξi,ηi)Δσi(i=1,2,3,,n),并作和 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \sum^{n}_{i=1}f(\xi_i,\eta_i)\Delta\sigma_i i=1nf(ξi,ηi)Δσi,如果当各小闭区域的直径中的最大值 λ → 0 \lambda\to0 λ0时,这个和的极限总存在,且与闭区域 D D D的分发及点 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi)的取法无关,那么称此极限为函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上的二重积分,记作 ∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \begin{aligned}\iint\limits_{D}f(x,y)d\sigma=\lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i,\eta_i)\Delta\sigma_i\end{aligned} Df(x,y)dσ=λ0limi=1nf(ξi,ηi)Δσi,其中 f ( x , y ) d σ f(x,y)d\sigma f(x,y)dσ叫做被积表达式, x x x y y y叫做积分变量, D D D叫做积分区域, ∑ i = 1 n f ( ξ i , η i ) Δ σ i \sum^n_{i=1}f(\xi_i,\eta_i)\Delta\sigma_i i=1nf(ξi,ηi)Δσi叫做积分和

二、二重积分的性质

性质1(线性):设 α \alpha α β \beta β为常数,则 ∬ D [ α f ( x , y ) + β g ( x , y ) ] d σ = α ∬ D f ( x , y ) d σ + β ∬ D g ( x , y ) d σ \iint\limits_D[\alpha f(x,y)+\beta g(x,y)]d\sigma=\alpha\iint\limits_Df(x,y)d\sigma+\beta\iint\limits_Dg(x,y)d\sigma D[αf(x,y)+βg(x,y)]dσ=αDf(x,y)dσ+βDg(x,y)dσ

性质2(区域可加):如果闭区域 D D D被有线条曲线分成有限个部分闭区域,那么在 D D D上的二重积分等于在各部分闭区域上的二重积分的和
例:如果 D D D分成两个闭区域 D 1 D_1 D1 D 2 D_2 D2,则 ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \iint\limits_Df(x,y)d\sigma=\iint\limits_{D_1}f(x,y)d\sigma+\iint\limits_{D_2}f(x,y)d\sigma Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ

性质3:如果在 D D D上, f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 σ \sigma σ D D D的面积,那么 σ = ∬ D 1 d σ = ∬ D d σ \sigma=\iint\limits_D1d\sigma=\iint\limits_Dd\sigma σ=D1dσ=Ddσ

性质4:如果在 D D D上, f ( x , y ) ≤ g ( x , y ) f(x,y)\leq g(x,y) f(x,y)g(x,y),那么有 ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint\limits_Df(x,y)d\sigma\leq\iint\limits_Dg(x,y)d\sigma Df(x,y)dσDg(x,y)dσ。特殊地,由于 − ∣ f ( x , y ) ∣ ≤ f ( x , y ) ≤ ∣ f ( x , y ) ∣ -|f(x,y)|\leq f(x,y)\leq|f(x,y)| f(x,y)f(x,y)f(x,y),所以 ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint\limits_Df(x,y)d\sigma|\leq\iint\limits_D|f(x,y)|d\sigma Df(x,y)dσDf(x,y)dσ

性质5:设 M M M m m m分别是 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上的最大值和最小值, σ \sigma σ D D D的面积,则有 m σ ≤ ∬ D f ( x , y ) d σ ≤ M σ m\sigma\leq\iint\limits_Df(x,y)d\sigma\leq M\sigma Df(x,y)dσMσ
证明:
m ≤ f ( x , y ) ≤ M m\leq f(x,y)\leq M mf(x,y)M
由性质4知, ∬ D m d σ ≤ ∬ D f ( x , y ) d σ ≤ ∬ D M d σ \iint\limits_Dmd\sigma\leq\iint\limits_Df(x,y)d\sigma\leq\iint\limits_DMd\sigma DmdσDf(x,y)dσDMdσ,即 m ∬ D d σ ≤ ∬ D f ( x , y ) d σ ≤ M ∬ D d σ m\iint\limits_Dd\sigma\leq\iint\limits_Df(x,y)d\sigma\leq M\iint\limits_Dd\sigma mDdσDf(x,y)dσMDdσ
由性质3得, m σ ≤ ∬ D f ( x , y ) d σ ≤ M σ m\sigma\leq\iint\limits_Df(x,y)d\sigma\leq M\sigma D</

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值