第十二讲:二重积分
普通对称性与轮换对称性
- 普通对称性
类比一重积分x轴上下对称部分面积会抵消,就大概知道二重积分的积分区域可以通过划分抵消。 - 轮换对称性
交换变量名或者积分的先后次序,并不会改变二重积分的最终结果。
积分技巧
直角坐标系
∫
∫
D
f
(
x
,
y
)
=
∫
a
b
d
x
∫
φ
1
(
x
)
φ
2
(
x
)
d
y
\int\int_Df(x,y)=\int_a^bdx\int_{φ_1(x)}^{φ_2(x)}dy
∫∫Df(x,y)=∫abdx∫φ1(x)φ2(x)dy(X型区域)
∫
∫
D
f
(
x
,
y
)
=
∫
c
d
d
y
∫
φ
1
(
y
)
φ
2
(
y
)
d
x
\int\int_Df(x,y)=\int_c^ddy\int_{φ_1(y)}^{φ_2(y)}dx
∫∫Df(x,y)=∫cddy∫φ1(y)φ2(y)dx(Y型区域)
- 四句口诀
后积先定限
(后积分的变量写在外层,写出这个变量的积分范围(一般来说是常数))
限内画条线
(这三句是写先积分变量的积分范围,一般会写成后积分的积分表示)
先交写下限,后交写上限.
(后积分x(上下型),后积分y(左右型)因为上限要大于下限,所以下->上,左->右)
极角坐标系
∫
∫
D
f
(
r
c
o
s
θ
,
r
s
i
n
θ
)
r
d
θ
d
r
\int\int_Df(rcosθ,rsinθ)rdθdr
∫∫Df(rcosθ,rsinθ)rdθdr
极角坐标一般来说都是后积分θ(写在外层),在θ1,θ1之间从原点划线,来确定r的范围,参照四句口诀。
- 与直角坐标系的相互转化
用x=rcosθ,y=sinθ来进行相互转。
对于直角方程若存在f(x,y),f(x/y),f(x/y),而且被积分区域面积D是圆形,这时候转化为极坐标计算就很方便计算了。
其他
- 交换积分次序
画出积分区域D按原函数,按照二重积分四句口诀,选择次序。 - 高斯曲线面积
I = ∫ 0 ∞ e − x 2 = π 2 I=\int_0^∞e^{-x^2}=\frac {\sqrt \pi}{2} I=∫0∞e−x2=2π(先计算I*I,用轮换性把积分区域变成第一象限,再用极坐标变换求解)