第十二讲:二重积分

普通对称性与轮换对称性

  • 普通对称性
    类比一重积分x轴上下对称部分面积会抵消,就大概知道二重积分的积分区域可以通过划分抵消。
  • 轮换对称性
    交换变量名或者积分的先后次序,并不会改变二重积分的最终结果。

积分技巧

直角坐标系

∫ ∫ D f ( x , y ) = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) d y \int\int_Df(x,y)=\int_a^bdx\int_{φ_1(x)}^{φ_2(x)}dy Df(x,y)=abdxφ1(x)φ2(x)dy(X型区域)
∫ ∫ D f ( x , y ) = ∫ c d d y ∫ φ 1 ( y ) φ 2 ( y ) d x \int\int_Df(x,y)=\int_c^ddy\int_{φ_1(y)}^{φ_2(y)}dx Df(x,y)=cddyφ1(y)φ2(y)dx(Y型区域)

  • 四句口诀
    后积先定限
    (后积分的变量写在外层,写出这个变量的积分范围(一般来说是常数))
    限内画条线
    (这三句是写先积分变量的积分范围,一般会写成后积分的积分表示)
    先交写下限,后交写上限.
    (后积分x(上下型),后积分y(左右型)因为上限要大于下限,所以下->上,左->右)

极角坐标系

∫ ∫ D f ( r c o s θ , r s i n θ ) r d θ d r \int\int_Df(rcosθ,rsinθ)rdθdr Df(rcosθ,rsinθ)rdθdr
极角坐标一般来说都是后积分θ(写在外层),在θ1,θ1之间从原点划线,来确定r的范围,参照四句口诀。

  • 与直角坐标系的相互转化
    用x=rcosθ,y=sinθ来进行相互转。
    对于直角方程若存在f(x,y),f(x/y),f(x/y),而且被积分区域面积D是圆形,这时候转化为极坐标计算就很方便计算了。

其他

  • 交换积分次序
    画出积分区域D按原函数,按照二重积分四句口诀,选择次序。
  • 高斯曲线面积
    I = ∫ 0 ∞ e − x 2 = π 2 I=\int_0^∞e^{-x^2}=\frac {\sqrt \pi}{2} I=0ex2=2π (先计算I*I,用轮换性把积分区域变成第一象限,再用极坐标变换求解)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值