元启发式优化算法是一种解决全局优化问题常用的方法,它主要是通过模拟自然和人类智慧来实现最优解的求解。
相比于传统的优化方法,如模拟退回,梯度下降等,1960年。元启发式优化方法首次被提出,是一种灵活且无视梯度变化的方法。
元启发式的优化算法主要可被分为四类:
(1)基于进化的算法
(2)基于群体智能的算法
(3)基于人类的算法
(4)基于物理和化学的算法
下面我们逐步介绍一下上述四种主要的智能优化算法。
1、基于进化的算法
基于进化的算法主要是通过模拟自然界中的优胜劣汰的进化法则(达尔文法则),实现种群的整体进步,最终完成最优解的求解。其中以遗传算法(Genetic Algorithm,GA)和差分进化(Differential Evolution ,DE)为主要代表。
随着科学家对基于自然进化算法的不断探索,随后也提出了多种进化优化算法,如:
evolutionary strategy (ES),https://www.scirp.org/reference/referencespapers.aspx?referenceid=1536208
evolutionary programming(EP),https://ieeexplore.ieee.org/document/771163/metrics#metrics
gene expression programming (GEP),https://www.researchgate.net/publication/285414114_Gene_Expression_Programming-A_New_Adaptive_Algorithm_for_Solving_Problems
genetic programming(GP),