对于回归而言,模型性能的好坏主要体现在拟合的曲线与真实曲线的误差。主要的评价指标包括:拟合优度/R-Squared,校正决定系数(Adjusted R-square),均方误差(MSE),均方根误差(RMSE),误差平方和(SSE),平均绝对误差(MAE),平均绝对百分比误差(MAPE)。
1、均方误差(MSE)
均方误差是指:观测值与真值偏差的平方和与观测次数的比值
公式:
MSE相当于模型中的损失函数,线性回归过程中尽量让该损失函数最小。那么模型之间的对比也可以用它来比较。MSE可以评价模型的预测精度,MSE的值越小,说明预测模型对于目标的拟合程度越精确。
2、均方根误差(RMSE)
RMSE(Root Mean Squard Error)均方根误差,RMSE其实是MSE开根号,两者实质一样,但RMSE能更好的描述数据。因为MSE单位量级和误差的量级不一样,而RMSE跟数据是一个级别的,更容易感知数据。
缺点:易受异常值的影响。
公式: