机器学习——常用的回归模型性能评价指标

对于回归而言,模型性能的好坏主要体现在拟合的曲线与真实曲线的误差。主要的评价指标包括:拟合优度/R-Squared,校正决定系数(Adjusted R-square),均方误差(MSE),均方根误差(RMSE),误差平方和(SSE),平均绝对误差(MAE),平均绝对百分比误差(MAPE)。

1、均方误差(MSE)

均方误差是指:观测值与真值偏差的平方和与观测次数的比值
公式:
在这里插入图片描述
MSE相当于模型中的损失函数,线性回归过程中尽量让该损失函数最小。那么模型之间的对比也可以用它来比较。MSE可以评价模型的预测精度,MSE的值越小,说明预测模型对于目标的拟合程度越精确。

2、均方根误差(RMSE)

RMSE(Root Mean Squard Error)均方根误差,RMSE其实是MSE开根号,两者实质一样,但RMSE能更好的描述数据。因为MSE单位量级和误差的量级不一样,而RMSE跟数据是一个级别的,更容易感知数据。
缺点:易受异常值的影响。

公式:
在这里插入图片描述

<

### 关于机器学习中的回归分析 #### 回归分析的概念 回归分析是一种统计学上研究变量之间相互关系的方法,旨在通过构建数学模型来描述因变量(目标变量)与自变量(特征变量)之间的依赖关系。在机器学习领域内,线性回归是最基础也是最常用的回归方法之一[^1]。 对于给定的数据集 \((X, y)\),其中 \(X\) 表示输入样本矩阵而 \(y\) 是对应的标签向量,线性回归试图找到一条直线使得这条直线上下波动最小化从而最好地拟合这些点的位置分布情况;当存在多个维度时,则寻找超平面来进行最佳匹配。 #### 实现方法技术栈 为了实现上述提到的各种类型的回归算法,在Python编程环境中可以借助多种库完成: - **Pandas**: 提供高效灵活的数据结构以及数据分析工具,方便读取、清洗并预处理原始数据文件; - **Scikit-Learn (sklearn)**: 这是一个非常流行的开源软件包,它实现了众多经典的监督式非监督式的机器学习算法,并提供了简单易用的应用接口以便快速搭建实验环境或生产系统; 下面给出一段简单的代码片段展示如何利用scikit-learn进行线性回归建模过程: ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import pandas as pd # 加载数据集 data = pd.read_csv('your_dataset.csv') X = data.drop(columns=['target']) y = data['target'] # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 创建模型实例 model = LinearRegression() # 训练模型 model.fit(X_train, y_train) # 输出模型参数 print(f'Coefficients: {model.coef_}') print(f'Intercept: {model.intercept_}') # 预测新数据的结果 predictions = model.predict(X_test) ``` 此外还有其他一些重要的组件如`matplotlib` `seaborn` 可用于绘制图表辅助理解数据特性及验证模型效果等操作[^2]。 #### 应用场景举例 回归分析广泛应用于各个行业当中解决实际问题,以下是几个典型例子: - **房价预测**:基于房屋面积大小、地理位置等因素估计房产价值; - **销售额度估算**:根据历史销售记录推测未来某段时间内的收入水平; - **医疗健康监测**:依据患者生理指标变化趋势判断疾病发展趋势或者治疗方案的有效程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值