圆拟合理论推导和Matlab实现

最佳二乘圆的推导和Matlab实现

1 理论推导

最近在学习的过程中需要使用最佳二乘圆和最佳二乘椭圆以及其他一些最佳二乘的二次曲线,恰巧又刚好学过一点矩阵论。刚好拿来练习一下。

首先搞清楚问题,最佳二乘拟合圆,即输入为散点集 { ( x i , y i ) ∣ x i ∈ R , y i ∈ R } \{(x_i,y_i)|x_i\in \R,y_i\in \R\} {(xi,yi)xiR,yiR},定义新的向量 { X ∣ X = [ x 1   x 2 . . . x n ] T ∈ R n } \{X|X=[x_1\ x_2...x_n]^T\in \R^n\} {XX=[x1 x2...xn]TRn} { Y ∣ Y = [ y 1   y 2 . . . y n ] T ∈ R n } \{Y|Y=[y_1\ y_2...y_n]^T\in \R^n\} {YY=[y1 y2...yn]TRn}。我们都知道不共线的三点能够唯一确定一个圆(共线的三点确定的圆圈半径无穷大,圆心在无穷远点)。那么当上面的 n = 3 n=3 n=3时,我们能够唯一的确定圆圈(把直线归纳为特殊的圆);当上面的 n > 3 n>3 n>3时,就存在可能我们新加入的点并不在原来的圆上。最小二乘的思想是,多个点求出的圆与输入散点集合的距离尽可能的近。这里的近一般是使用向量间的欧式距离进行描述。我们知道在二维平面,唯一确定一个圆需要三个参数即圆心横坐标,圆心纵坐标以及半径三个参数,即我们需要求出这三个参数即可。

然后开始我们正式的推导,我们在中学时代就已经知道,圆方程的一般形式是:
( x − x 0 ) 2 + ( y − y 0 ) 2 = R 2 (x-x_0)^2+(y-y_0)^2=R^2 (xx0)2+(yy0)2=R2
将其展开为:
x 2 + y 2 − 2 x x 0 − 2 y y 0 + x 0 2 + y 0 2 = R 2 x^2+y^2-2xx_0-2yy_0+x_0^2+y_0^2=R^2 x2+y22xx02yy0+x02+y02=R2
[数学从来没有简单或复杂,只有已知与未知。]接下来这一步是关键,目的在于把关于 x 0 , y 0 , R x_0,y_0,R x0,y0,R的非线性方程转换为线性方程,然后利用矩阵的工具进行求解。变换后的方程为:
x 2 + y 2 + a x + b y + c = 0 x^2+y^2+ax+by+c=0 x2+y2+ax+by+c=0
其中:
{ a = − 2 x 0 b = − 2 y 0 c = x 0 2 + y 0 2 − R 2 \begin{cases} \begin{aligned} a &= -2x_0\\ b &=-2y_0\\ c &=x_0^2+y_0^2-R^2 \end{aligned} \end{cases} abc=2x0=2y0=x02+y02R2
我们使用一个非线性变换,把关于 x 0 , y 0 , R x_0,y_0,R x0,y0,R的非线性方程变成了关于 a , b , c a,b,c a,b,c的线性方程。既然是线性方程我们就可以写出矩阵形式:
[ x y 1 ] × [ a b c ] = − x 2 − y 2 \begin{bmatrix} x&y&1\\ \end{bmatrix}\times \begin{bmatrix} a\\ b\\ c \end{bmatrix}= -x^2-y^2 [xy1]×abc=x2y2
这样对于每个点,我们都能得到一个线性方程。对于 n n n个点,我们将得到的方程写成矩阵的形式:
[ x 1 y 1 1 x 2 y 2 1 ⋮ ⋮ ⋮ x n y n 1 ] × [ a b c ] = [ − x 1 2 − y 1 2 − x 2 2 − y 2 2 ⋮ − x n 2 − y n 2 ] \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots &\vdots\\ x_n & y_n & 1 \\ \end{bmatrix}\times \begin{bmatrix} a\\ b\\ c\\ \end{bmatrix}= \begin{bmatrix} -x_1^2-y_1^2\\ -x_2^2-y_2^2\\ \vdots\\ -x_n^2-y_n^2\\ \end{bmatrix} x1x2xny1y2yn111×abc=x12y12x22y22xn2yn2
这个问题中,未知数的个数为3,独立方程的个数为 n n n。矩阵论中给出了形如 A X = b AX=b AX=b的方程组在独立方程个数多于未知数个数时的最佳二乘解为 X = A + b X=A^+b X=A+b,其中 A + A^+ A+表示的是矩阵 A A A的M-P广义逆。

对于我们这个问题我们需要求下面这个矩阵的广义逆:
A = [ x 1 y 1 1 x 2 y 2 1 ⋮ ⋮ ⋮ x n y n 1 ] A=\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots &\vdots\\ x_n & y_n & 1 \\ \end{bmatrix} A=x1x2xny1y2yn111
对于拟合问题,即 n > 3 n>3 n>3时,矩阵 A A A是一个列满秩矩阵。矩阵论中给出了列满秩矩阵的计算公式为:
A + = ( A H A ) − A H A^+=(A^HA)^-A^H A+=(AHA)AH
对于实矩阵, A H A^H AH表示其对称矩阵,则未知数构成的向量的解为:
[ a b c ] = ( A H A ) − A H [ − x 1 2 − y 1 2 − x 2 2 − y 2 2 ⋮ − x n 2 − y n 2 ] = B − C \begin{bmatrix} a\\ b\\ c \end{bmatrix}=(A^HA)^-A^H \begin{bmatrix} -x_1^2-y_1^2\\ -x_2^2-y_2^2\\ \vdots\\ -x_n^2-y_n^2\\ \end{bmatrix}=B^-C abc=(AHA)AHx12y12x22y22xn2yn2=BC
计算 B B B矩阵:
B = A H A = [ x 1 x 2 ⋯ x n y 1 y 2 ⋯ y n 1 1 ⋯ 1 ] × [ x 1 y 1 1 x 2 y 2 1 ⋮ ⋮ ⋮ x n y n 1 ] = [ ∑ i = 1 n x i 2 ∑ i = 1 n x i y i ∑ i = 1 n x i ∑ i = 1 n x i y i ∑ i = 1 n y i 2 ∑ i = 1 n y i ∑ i = 1 n x i ∑ i = 1 n y i n ] B=A^HA=\begin{bmatrix} x_1 &x_2&\cdots&x_n \\ y_1 &y_2&\cdots&y_n \\ 1 &1&\cdots&1\\ \end{bmatrix}\times \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots &\vdots\\ x_n & y_n & 1 \\ \end{bmatrix}\\ =\begin{bmatrix} \sum_{i=1}^{n}x_i^2&\sum_{i=1}^nx_iy_i&\sum_{i=1}^nx_i\\ \sum_{i=1}^nx_iy_i&\sum_{i=1}^{n}y_i^2&\sum_{i=1}^ny_i\\ \sum_{i=1}^nx_i&\sum_{i=1}^ny_i&n \end{bmatrix} B=AHA=x1y11x2y21xnyn1×x1x2xny1y2yn111=i=1nxi2i=1nxiyii=1nxii=1nxiyii=1nyi2i=1nyii=1nxii=1nyin
计算 C C C矩阵:
C = A H ∗ [ − x 1 2 − y 1 2 − x 2 2 − y 2 2 ⋮ − x n 2 − y n 2 ] = [ x 1 x 2 ⋯ x n y 1 y 2 ⋯ y n 1 1 ⋯ 1 ] × [ − x 1 2 − y 1 2 − x 2 2 − y 2 2 ⋮ − x n 2 − y n 2 ] = − [ ∑ i = 1 n ( x i 3 + x i y i 2 ) ∑ i = 1 n ( x i 2 y i + y i 3 ) ∑ i = 1 n ( x i 2 + y i 2 ) ] C=A^H*\begin{bmatrix} -x_1^2-y_1^2\\ -x_2^2-y_2^2\\ \vdots\\ -x_n^2-y_n^2\\ \end{bmatrix}= \begin{bmatrix} x_1 &x_2&\cdots&x_n \\ y_1 &y_2&\cdots&y_n \\ 1 &1&\cdots&1\\ \end{bmatrix}\times \begin{bmatrix} -x_1^2-y_1^2\\ -x_2^2-y_2^2\\ \vdots\\ -x_n^2-y_n^2\\ \end{bmatrix} =-\begin{bmatrix} \sum_{i=1}^n(x_i^3+x_iy_i^2)\\ \sum_{i=1}^n(x_i^2y_i+y_i^3)\\ \sum_{i=1}^n(x_i^2+y_i^2)\\ \end{bmatrix} C=AHx12y12x22y22xn2yn2=x1y11x2y21xnyn1×x12y12x22y22xn2yn2=i=1n(xi3+xiyi2)i=1n(xi2yi+yi3)i=1n(xi2+yi2)

至此我们在具备矩阵论知识的基础上,推导了最佳拟合圆的解析解。

2 Matlab 实现

[我说你的理论没用,把代码拿出来试试。]在有了理论基础的前提下,代码就可以四两拨千斤。

最小二乘圆拟合函数:

%%020406081012141618202224262830323436384042444648505254565860626466687072747678%%
%@func:Fit the scatters by least-square circle;
%@inpt:Coordinate set (x,y);
%@oupt:The circle struct contains center and radius;
%@note:
%@date:2021/01/23 by xiyin,li in hust;
function [Circle] = circleFit(x,y)
xlength = length(x);
if(xlength ~= length(y) | xlength  < 3)
    warning('the length of x and y must be same and greater than 3');
else
    xx = x.*x;xy = x.*y;yy = y.*y;
    B = [sum(xx) sum(xy) sum(x);sum(xy) sum(yy) sum(y);sum(x) sum(y) xlength];
    C = [sum(xx.*x+yy.*x);sum(xx.*y+yy.*y);sum(xx+yy)];
    D = inv(B)*C;
    Circle.x0 = D(1)/2;
    Circle.y0 = D(2)/2;
    Circle.R = sqrt(Circle.x0*Circle.x0+Circle.y0*Circle.y0+D(3));
    theta = linspace(0.1*pi,1.9*pi,100)
    Cirlcex = Circle.x0 + Circle.R*cos(theta);
    Cirlcey = Circle.y0 + Circle.R*sin(theta);
    plot(x,y,'o');
    hold on
    plot(Cirlcex ,Cirlcey,'r','linewidth',1.6);
    legend('输入散点','最小二乘圆')
    axis equal
end
end

使用如下的例子进行测试:

clc,clear;
close all
Sensor012 = csvread('CircleSensor012.csv');
Sensor.num0.x = Sensor012(1,:);
Sensor.num0.y = Sensor012(2,:);
Circle = circleFit(Sensor.num0.x,Sensor.num0.y);

结果为:
在这里插入图片描述

3 总结

  • 本文通过变换,将非线性问题变成线性方程的解,使用广义逆进行求解。
  • 本文通过Matlab进行了实现,实现过程与推导过程完全一致。
  • 作者第一次使用Markdown进行文档编辑,相对于word比较吃力。
  • 后面将进行推导椭圆拟合,双曲线拟合以及其他一些二次型曲线拟合。
  • 10
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值