一、OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized
情形一:之前没有任何下载安装等其他异常操作,而直接使用的时候报错了
解决方法:可以检查一下自己anaconda的安装路径中是否存在两个该dll文件。比如我在pycharm中使用的是虚拟环境yolov5,在pycharm的右小角可以看到自己当前使用的环境。
找到该环境下的位置:
之后在该文件夹下搜索libiomp5md.dll
文件果真存在两个,那么删除其中一个就好了,为了保险起见,我们可以进行备份。之后出问题,还能进行找补。 (大部分属于情形一)
情形二:numpy或其他
解决办法:将下面语句(建议)放在文件的顶头部分,且保证两句接连的前后顺序关系,即不要在这两个语句之间插入其他语句
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
。
二、ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问
问题描述:在更新pip执行python -m pip install --upgrade pip命令的时候弹出如下报错
解决方法:添加 --user选项赋予权限就可以搞定。
python -m pip install --upgrade pip -i https://pypi.douban.com/simple --user
三、ImportError: Failed to initialize: Bad git executable.
问题描述:在跑YOLOv5官方数据集时,出现这个错误,ImportError: Failed to initialize: Bad git executable.
具体错误如下:
ImportError: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
- be included in your $PATH
- be set via $GIT_PYTHON_GIT_EXECUTABLE
- explicitly set via git.refresh()
All git commands will error until this is rectified.
This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
- quiet|q|silence|s|none|n|0: for no warning or exception
- warn|w|warning|1: for a printed warning
- error|e|raise|r|2: for a raised exception
Example:
export GIT_PYTHON_REFRESH=quiet
具体原因:未知
解决办法:在train.py文件中的import os后面加上如下代码
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
具体位置:
import argparse
import math
import os
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
完美解决
四、pytorch 查看GPU数量,是否可用
import torch
#1 cuda是否可用
torch.cuda.is_available()
#2 cuda版本(注意是两个_)
torch.__version__
#3 返回gpu数量
torch.cuda.device_count()
#4 返回gpu名字,设备索引默认从0开始;
torch.cuda.get_device_name(0)
#5 返回当前设备索引
torch.cuda.current_device()
最近遇到的东西太多了,今天顶着疲惫的身躯把这些问题总结一下,也好好消化一下,后面把linux,windos的gpu环境配置再总结一下输出出来!之前就发现一个问题,一个人学习好像很容易陷入一个“局部最优解"(机器学习现学现卖),然后通过帮助别人去解决一些问题(兼职)能够让自己跳出这个局部最优解从而引导去寻求全局最优解,能够让自己不断的得到提升!学习的过程亦苦亦乐!”慢慢来会很快”,一步一个脚印。
接下来终于可以进行我的下一个学习计划了,打算开个pytorch学习专栏,感觉还不错!gogogo