2023.8.18-8.22在学习遇到关于yolo的问题总结

一、OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized

情形一:之前没有任何下载安装等其他异常操作,而直接使用的时候报错了

解决方法:可以检查一下自己anaconda的安装路径中是否存在两个该dll文件。比如我在pycharm中使用的是虚拟环境yolov5,在pycharm的右小角可以看到自己当前使用的环境。

 找到该环境下的位置:

之后在该文件夹下搜索libiomp5md.dll文件果真存在两个,那么删除其中一个就好了,为了保险起见,我们可以进行备份。之后出问题,还能进行找补。 (大部分属于情形一)

情形二:numpy或其他

解决办法:将下面语句(建议)放在文件的顶头部分,且保证两句接连的前后顺序关系,即不要在这两个语句之间插入其他语句

import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'

 。

二、ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问

问题描述:在更新pip执行python -m pip install --upgrade pip命令的时候弹出如下报错

解决方法:添加 --user选项赋予权限就可以搞定。

python -m pip install --upgrade pip -i https://pypi.douban.com/simple --user

三、ImportError: Failed to initialize: Bad git executable.

问题描述:在跑YOLOv5官方数据集时,出现这个错误,ImportError: Failed to initialize: Bad git executable.

具体错误如下

ImportError: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
    - be included in your $PATH
    - be set via $GIT_PYTHON_GIT_EXECUTABLE
    - explicitly set via git.refresh()
 
All git commands will error until this is rectified.
 
This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
    - quiet|q|silence|s|none|n|0: for no warning or exception
    - warn|w|warning|1: for a printed warning
    - error|e|raise|r|2: for a raised exception
 
Example:
    export GIT_PYTHON_REFRESH=quiet

具体原因:未知

解决办法:在train.py文件中的import os后面加上如下代码

os.environ["GIT_PYTHON_REFRESH"] = "quiet"

具体位置:

import argparse
import math
import os
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path

完美解决

四、pytorch 查看GPU数量,是否可用

import torch
#1 cuda是否可用
torch.cuda.is_available()
#2 cuda版本(注意是两个_)
torch.__version__
#3 返回gpu数量
torch.cuda.device_count()
#4 返回gpu名字,设备索引默认从0开始;
torch.cuda.get_device_name(0)
#5 返回当前设备索引
torch.cuda.current_device()

最近遇到的东西太多了,今天顶着疲惫的身躯把这些问题总结一下,也好好消化一下,后面把linux,windos的gpu环境配置再总结一下输出出来!之前就发现一个问题,一个人学习好像很容易陷入一个“局部最优解"(机器学习现学现卖),然后通过帮助别人去解决一些问题(兼职)能够让自己跳出这个局部最优解从而引导去寻求全局最优解,能够让自己不断的得到提升!学习的过程亦苦亦乐!”慢慢来会很快”,一步一个脚印。

接下来终于可以进行我的下一个学习计划了,打算开个pytorch学习专栏,感觉还不错!gogogo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研分母

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值