yolov5-5.0模型部署--pt模型转换为rknn模型并部署在RK3588开发板上(小白保姆级教学)

目录(每一个环境都很重要!)

1.使用正确版本(v5.0)的yolov5进行训练得到pt模型;

2.将pt模型使用yolov5工程中的export.py转换为onnx模型;

3.将onnx模型使用rknn-toolkit2中onnx文件夹的test.py转换为rknn模型

4.在板子上使用rknpu2工具调用rknn模型,实现NPU推理加速

一、使用正确版本(v5.0)的yolov5进行训练得到pt模型;

一定一定一定要选择正确的版本进行训练,别一从头开始就走远了(抱头痛哭),官方给出的版本id如下图所示:

 但是我打开之后发现资源没了,之后我选择的了yolov5-5.0版本的进行模型训练。(如果能打开的话可以参考这篇博客)https://blog.csdn.net/m0_57315535/article/details/128250096?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169044858316800182715751%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=169044858316800182715751&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-4-128250096-null-null.142^v91^insertT0,239^v3^control&utm_term=pt%E8%BD%ACrknn&spm=1018.2226.3001.4187如果没有资源的话就下载yolov5-5.0的进行训练,按照后面的流程走一般是不会出现大问题的,训练完以后保存好best.pt这个权重!至此第一部分结束。

二.将pt模型使用yolov5工程中的export.py转换为onnx模型

在yolov5-5.0代码中,将yolo.py替换为如下代码(跟官方的不太一样)

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
YOLO-specific modules

Usage:
    $ python models/yolo.py --cfg yolov5s.yaml
"""

import argparse
import contextlib
import os
import platform
import sys
from copy import deepcopy
from pathlib import Path

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import *  # noqa
from models.experimental import *  # noqa
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
                               time_sync)

try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None


class Detect(nn.Module):
    # YOLOv5 Detect head for detection models
    stride = None  # strides computed during build
    dynamic = False  # force grid reconstruction
    export = False  # export mode

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid
        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                if isinstance(self, Segment):  # (boxes + masks)
                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
                else:  # Detect (boxes only)
                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf), 4)
                z.append(y.view(bs, self.na * nx * ny, self.no))

        return x if self.training else (torch.cat(z, 1), ) if self.export else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
        d = self.anchors[i].device
        t = self.anchors[i].dtype
        shape = 1, self.na, ny, nx, 2  # grid shape
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility
        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
        return grid, anchor_grid


class Segment(Detect):
    # YOLOv5 Segment head for segmentation models
    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
        super().__init__(nc, anchors, ch, inplace)
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.no = 5 + nc + self.nm  # number of outputs per anchor
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.proto = Proto(ch[0], self.npr, self.nm)  # protos
        self.detect = Detect.forward

    def forward(self, x):
        p = self.proto(x[0])
        x = self.detect(self, x)
        return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])


class BaseModel(nn.Module):
    # YOLOv5 base model
    def forward(self, x, profile=False, visualize=False):
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _profile_one_layer(self, m, x, dt):
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x, ), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self


class DetectionModel(BaseModel):
    # YOLOv5 detection model
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            check_anchor_order(m)
            m.anchors /= m.stride.view(-1, 1, 1)
            self.stride = m.stride
            self._initialize_biases()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)


Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility


class SegmentationModel(DetectionModel):
    # YOLOv5 segmentation model
    def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
        super().__init__(cfg, ch, nc, anchors)


class ClassificationModel(BaseModel):
    # YOLOv5 classification model
    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):  # yaml, model, number of classes, cutoff index
        super().__init__()
        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)

    def _from_detection_model(self, model, nc=1000, cutoff=10):
        # Create a YOLOv5 classification model from a YOLOv5 detection model
        if isinstance(model, DetectMultiBackend):
            model = model.model  # unwrap DetectMultiBackend
        model.model = model.model[:cutoff]  # backbone
        m = model.model[-1]  # last layer
        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
        c = Classify(ch, nc)  # Classify()
        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
        model.model[-1] = c  # replace
        self.model = model.model
        self.stride = model.stride
        self.save = []
        self.nc = nc

    def _from_yaml(self, cfg):
        # Create a YOLOv5 classification model from a *.yaml file
        self.model = None


def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(vars(opt))
    device = select_device(opt.device)

    # Create model
    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
    model = Model(opt.cfg).to(device)

    # Options
    if opt.line_profile:  # profile layer by layer
        model(im, profile=True)

    elif opt.profile:  # profile forward-backward
        results = profile(input=im, ops=[model], n=3)

    elif opt.test:  # test all models
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    else:  # report fused model summary
        model.fuse()

注意,训练的时候不要修改,训练完之后转onnx模型的时候再改!

接着将训练好的best.pt文件存至与yolo.py同一级的文件夹中

并且修改export.py的配置文件

 运行export.py会得到onnx模型。到这里第二部算是大功告成了!

以上部分都是在windows系统上完成的---------------------------------------------------------------------

下面的将要在Linux系统上完成。

三.将onnx模型使用rknn-toolkit2中onnx文件夹的test.py转换为rknn模型

GitHub - rockchip-linux/rknn-toolkit2rknn-toolkit2下载链接GitHub - rockchip-linux/rknn-toolkit2

 将这个文件下载下来

1.安装rknn-toolkit2的环境

其环境要求在./doc目录下

这里我使用的是anaconda创建的python3.8虚拟环境,创建环境并命名为RKnn

conda create -n RKnn python==3.8

使用pip安装requirements_cp38-1.4.0.txt中的包

pip install -r requirements_cp38-1.5.0.txt

 别安装错了!

2.下载rknn_toolkit2-1.4.0

在./packages目录下

输入以下命令:

pip install rknn_toolkit2-1.5.0+1fa95b5c-cp38-cp38-linux_x86_64.whl

提示安装完成后我们可以检查是否安装成功,在终端中运行python,输入:

from rknn.api import RKNN

若不报错说明我们的工具包已经安装成功,之后便可进行rknn模型的转换了~(ctrl+D退出python)

3.onnx转换为rknn

在rknn-toolkit2工程文件夹中浏览至 ./examples/onnx/yolov5,将我们在之前转换得到的best.onnx复制到该文件夹下,修改该文件夹下的test.py中的内容为自己模型的名字,要修改的地方如下:

 修改完之后在终端输入(目录转到yolov5中)

python test.py

顺利运行完之后就可以看到rknn模型了

四.在板子上使用rknpu2工具调用rknn模型,实现NPU推理加速

在3588的主目录上获取官方demo

git clone https://github.com/rockchip-linux/rknpu2.git

进入yolov5目录

cd /home/ptay/rknpu2-master/examples/rknn_yolov5_demo

修改include文件中的头文件postprocess.h

#define OBJ_CLASS_NUM     3  #这里的数字修改为数据集的类的个数

修改model目录下的coco_80_labels_list.txt文件, 改为自己的类并保存

xxxxxxxxx

将转换后的rknn文件放在model/RK3588目录下

编译,运行shell

bash ./build-linux_RK3588.sh

成功后生成install目录

cd install/rknn_yolov5_demo_linux

在model目录下放入需要推理的图片

运行

./rknn_yolov5_demo ./model/RK3588/last.rknn ./model/0625_xx_005.jpg

注:后面的图片用的全路径,因为当前的相对路径识别不到(主要是看图片所在的位置)

在rknn_yolov5_demo_linux获取到结果

如果有什么问题大家可以在评论区一起交流探讨学习!!1

  • 6
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论
A: 首先,需要安装CUDA和CUDNN的相关库,并下载yolov5的代码仓库。然后,按照以下步骤来编写部署在nvidia开发板上的yolov5模型推理代码。 1. 导入必要的头文件 ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <unistd.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/time.h> #include <cuda_runtime_api.h> #include <cublas_v2.h> #include <curand.h> #include <cudnn.h> #include "darknet.h" ``` 2. 定义模型类和相关参数 ```c typedef struct{ network net; float *output; float *input; cudaStream_t stream; } yolov5; #define BATCH 1 #define DEVICE 0 #define NMS_THRESH 0.45 #define CONF_THRESH 0.25 #define CLASS_NUM 80 #define ANCHOR_NUM 3 #define INPUT_H 640 #define INPUT_W 640 #define CLASS_NAME_FILE "./coco.names" #define WEIGHTS_FILE "./yolov5s.weights" ``` 3. 加载模型 ```c void load_model(yolov5 *model, char *classes_path, char *weights_path){ // 加载类别名 char **names = get_labels(classes_path); // 加载模型 model->net = parse_network_cfg(cfg_path); if(weights_path){ load_weights(&model->net, weights_path); } // 设置输入层 model->input = (float *)calloc(model->net.batch * model->net.inputs, sizeof(float)); cudaMalloc((void **)&model->output, model->net.batch * model->net.outputs * sizeof(float)); cudaStreamCreate(&model->stream); set_batch_network(&model->net, BATCH); model->net.layers[model->net.n - 1].classes = CLASS_NUM; model->net.layers[model->net.n - 1].anchor_num = ANCHOR_NUM; model->net.layers[model->net.n - 1].confidence_thresh = CONF_THRESH; model->net.layers[model->net.n - 1].nms_thresh = NMS_THRESH; model->net.layers[model->net.n - 1].mask = (int *)calloc(ANCHOR_NUM, sizeof(int)); for(int i = 0; i < ANCHOR_NUM; i++) model->net.layers[model->net.n - 1].mask[i] = i; srand(time(NULL)); } ``` 4. 推理函数 ```c void yolov5_inference(yolov5 *model, char *img_path){ // 加载图片 image img = load_image_color(img_path, 0, 0); // 缩放图片 image sized = resize_image(img, INPUT_W, INPUT_H); // 将数据写入输入层 fill_cuda_data(sized.data, INPUT_H * INPUT_W * 3, model->input, INPUT_H * INPUT_W * 3 * BATCH, model->stream); // 进行推理 forward_network(&model->net, model->input); // 获取输出结果 get_network_boxes(&model->net, img.w, img.h, CONF_THRESH, model->net.layers[model->net.n - 1].mask, 0, 1, model->output, 1, &model->net.layers[model->net.n - 1], model->net.classes, model->net.outputs, 1); // 进行非极大值抑制 do_nms_sort(model->net.hold_cpu, model->net.hold_gpu, model->net.batch, model->net.layers[model->net.n - 1].classes, model->net.layers[model->net.n - 1].w, model->net.layers[model->net.n - 1].h, model->output, model->net.layers[model->net.n - 1].nms, CLASS_NUM, NMS_THRESH); // 输出结果 draw_detections(img, model->net.hold_cpu, model->net.darknet_gpu, model->net.layers[model->net.n - 1], CLASS_NUM, names, WINDOW_WIDTH, WINDOW_HEIGHT, 0); } ``` 5. main函数 ```c int main(int argc, char **argv){ yolov5 model; // 加载模型 load_model(&model, CLASS_NAME_FILE, WEIGHTS_FILE); // 进行推理 yolov5_inference(&model, argv[1]); // 释放资源 cudaFree(model.input); cudaFree(model.output); cudaStreamDestroy(model.stream); free_network(model.net); return 0; } ``` 以上就是用C语言编写的在nvidia开发板部署yolov5模型推理代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研分母

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值