算法效率分为两种:一种是时间效率,另一种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。
时间复杂度的定义:
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
举个例子
void Fun1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int m = 10;
while (m--)
{
++count;
}
printf("%d\n", count);
}
在这段代码中Fun1执行的操作次数为:F(N)=N^2+2*N+10
N=10 F(N)=130
N=100 F(N)=10210
N=1000 F(N)=1002010
在实际计算时间复杂度时,我们并不需要精确计算执行次数,于是我们采用大O渐进表示法。
大O符号:是用于描述函数渐进行为的数学符号。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数
- 在执行次数函数中,只保留