L1-3 宇宙无敌加法器(20 分)
地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。
输入格式:
输入首先在第一行给出一个 N 位的进制表(0 < N ≤ 20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。
输出格式:
在一行中输出两个 PAT 数之和。
输入样例:
30527
06203
415
输出样例:
7201
部分正确代码
#include<bits/stdc++.h>
using namespace std;
int main(){
int n,x,y;
int n1[1000];
int n2[1000];
int n3[1000];
int n4[1000];
int n5[1000];
int i,j,k,l,m;
memset(n2,0,sizeof(n2));
memset(n3,0,sizeof(n3));
cin>>n;
i=0;
while(n>0){
n1[i++]=n%10;
n=n/10;
}
cin>>x;
j=0;
while(x>0){
n2[j++]=x%10;
x=x/10;
}
cin>>y;
k=0;
while(y>0){
n3[k++]=y%10;
y=y/10;
}
// cout<<i<<j<<k<<"****"<<endl;
l=j>k?j:k;
for(m=0;m<i;m++){
n4[m]=n2[m]+n3[m];
}
for(m=0;m<i;m++){
if(n1[m]==0){
n5[m]=n4[m]%10;
n4[m+1]=n4[m+1]+(n4[m]/10);
}else{
n5[m]=n4[m]%n1[m];
n4[m+1]=n4[m+1]+(n4[m]/n1[m]);
}
}
/* for(m=0;m<i;m++){
cout<<n5[m]<<" ";
}
cout<<endl;*/
int flag=i-1;
for(j=0;j<i;j++){
if(n5[flag]==0){
flag--;
}else
break;
}
for(j=flag;j>=0;j--){
cout<<n5[j];
}
cout<<endl;
return 0;
}
/*
问题代码
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
// char s1[1000],s2[1000];
char n1[1000];
char n2[1000];
int n3[1000];
int n4[1000];
int n5[1000];
int n6[1000];
int n7[1000];
int i,j;
memset(n6,0,sizeof(n6));
memset(n7,0,sizeof(n7));
cin>>n;
getchar();
i=0;
while(n>0){
n3[i++]=n%10;
n=n/10;
}
scanf("%s",n1);
getchar();
scanf("%s",n2);
strrev(n1);
strrev(n2);
//printf("%s %s",n1,n2);
int len1=strlen(n1);
for(j=0;j<len1;j++){
n6[j]=n1[j]-'0';
}
int len2=strlen(n2);
for(j=0;j<len2;j++){
n7[j]=n2[j]-'0';
}
//int min=len1>len2?len2:len1;
int max=len1>len2?len1:len2;
for(j=0;j<max;j++){
n4[j]=(n6[j])+(n7[j]);
}/*
for(j=0;j<max;j++){
cout<<n4[j]<<" ";
}
cout<<endl;*/
for(j=0;j<max;j++){
if(n3[j]==0){
n5[j]=n4[j]%10;
n4[j+1]=n4[j+1]+(n4[j]/10);
}else{
n5[j]=n4[j]%n3[j];
n4[j+1]=n4[j+1]+(n4[j]/n3[j]);
}
}
/*for(j=0;j<i;j++){
cout<<n3[j]<<" ";
}
cout<<endl;
for(j=0;j<max;j++){
cout<<n4[j]<<" ";
}
cout<<endl;*/
int flag=max-1;
for(j=0;j<max;j++){
if(n5[flag]==0){
flag--;
}else
break;
}
for(j=flag;j>=0;j--){
cout<<n5[j];
}
cout<<endl;
return 0;
}
*/