L1-3 宇宙无敌加法器(20 分)(部分正确 12分)

L1-3 宇宙无敌加法器(20 分)

地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。

在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。

输入格式:

输入首先在第一行给出一个 N 位的进制表(0 < N  20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。

输出格式:

在一行中输出两个 PAT 数之和。

输入样例:

30527
06203
415

输出样例:

7201

部分正确代码 

#include<bits/stdc++.h>
using namespace std;
int main(){
  int n,x,y;
  int n1[1000];
  int n2[1000];
  int n3[1000];
  int n4[1000];
  int n5[1000];
  int i,j,k,l,m;
  memset(n2,0,sizeof(n2));
  memset(n3,0,sizeof(n3));
  cin>>n;
  i=0;
  while(n>0){
  	n1[i++]=n%10;
  	 n=n/10;
  }
  cin>>x;
  j=0;
  while(x>0){
  	n2[j++]=x%10;
  	x=x/10;
  }
  cin>>y;
   k=0;
   while(y>0){
   	n3[k++]=y%10;
   	y=y/10;
   }
  // cout<<i<<j<<k<<"****"<<endl;
   l=j>k?j:k;
   for(m=0;m<i;m++){
   	n4[m]=n2[m]+n3[m];
   }
   for(m=0;m<i;m++){
     if(n1[m]==0){
     	n5[m]=n4[m]%10;
     	n4[m+1]=n4[m+1]+(n4[m]/10);
	 }else{
	 	n5[m]=n4[m]%n1[m];
	 	n4[m+1]=n4[m+1]+(n4[m]/n1[m]);
	 } 
   }
  /* for(m=0;m<i;m++){
   	cout<<n5[m]<<" ";
   }
   cout<<endl;*/
   
int flag=i-1;
 for(j=0;j<i;j++){
     if(n5[flag]==0){
          flag--; 	
	 }else
	  break;
 }
 for(j=flag;j>=0;j--){
 	  cout<<n5[j];
 }
 cout<<endl;
   return 0;
}


/* 

问题代码  

#include<bits/stdc++.h>
using namespace std;
int main(){
 int n;
// char s1[1000],s2[1000];
 char n1[1000];
 char n2[1000];
 int n3[1000];
 int n4[1000];
 int n5[1000];
 int n6[1000];
 int n7[1000];
 int i,j;
 memset(n6,0,sizeof(n6));
 memset(n7,0,sizeof(n7));
 cin>>n;
 getchar();
  i=0;
 while(n>0){
 	n3[i++]=n%10;
 	n=n/10;
 }
scanf("%s",n1);
getchar();
scanf("%s",n2);
strrev(n1);
strrev(n2);
//printf("%s %s",n1,n2); 
int len1=strlen(n1);
for(j=0;j<len1;j++){
	n6[j]=n1[j]-'0';
}
int len2=strlen(n2);
for(j=0;j<len2;j++){
	n7[j]=n2[j]-'0';
}
//int min=len1>len2?len2:len1;
int max=len1>len2?len1:len2;

 for(j=0;j<max;j++){
 	n4[j]=(n6[j])+(n7[j]);
 }/*
  for(j=0;j<max;j++){
 	cout<<n4[j]<<" ";
 }
 cout<<endl;*/
 for(j=0;j<max;j++){
 	if(n3[j]==0){
 	 n5[j]=n4[j]%10;
	 n4[j+1]=n4[j+1]+(n4[j]/10);	
	 }else{
	n5[j]=n4[j]%n3[j];
 	n4[j+1]=n4[j+1]+(n4[j]/n3[j]);	
	 }
 }
 /*for(j=0;j<i;j++){
 	cout<<n3[j]<<" ";
 }
 cout<<endl;
 for(j=0;j<max;j++){
 	cout<<n4[j]<<" ";
 }
 cout<<endl;*/
  int flag=max-1;
 for(j=0;j<max;j++){
     if(n5[flag]==0){
          flag--; 	
	 }else
	  break;
 }
 for(j=flag;j>=0;j--){
 	  cout<<n5[j];
 }
 cout<<endl;
 return 0;

}

*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值