快速幂基本知识

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LMengi000/article/details/79948288

参考博客:::https://blog.csdn.net/java_c_android/article/details/55802041

挑战程序设计竞赛  122页

Carmichael Numbers

时间限制: 1 Sec  内存限制: 64 MB
提交: 16  解决: 7
[提交][ 状态 ][ 讨论版]

题目描述

Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized primality tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let a be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if the following equation holds: an mod n = a If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, there is bad news. Certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. Write a program to test whether a given integer is a Carmichael number.

输入

The input will consist of a series of lines, each containing a small positive number n ( 2 < n < 65, 000). A number n = 0 will mark the end of the input, and must not be processed.

输出

For each number in the input, print whether it is a Carmichael number or not as shown in the sample output

样例输入

1729
17
561
1109
431
0

样例输出

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

提示

来源

UVA toolkit

[提交][ 状态 ][ 讨论版]

HOMEBack





题目大意:

我们把对任意的1<x<n都有x^n=x mod n成立的合数n称为Carmichael number,给定一个整数n,判断它是不是Carmichael number。

思路:

编译器暂时改为Dev c++ 原来是VS2012 ,为了适应过几周的蓝桥杯编译环境。

直接枚举x用上快速幂即可。

还有要注意的是合数,素数就不是Carmichael number啦。


#include<cstdio>
#include<cstring>

typedef long long LL;
const int MAXN=65000+10;
bool primer[MAXN];
LL pow(LL x,LL n,LL mod) //x^n%mod
{
	LL res=1;
	while(n)
	{
		if( n & 1) res=res*x%mod;
		x=x*x%mod;
		n>>=1;
	}
	return res;
}
int main()
{
	memset(primer,0,sizeof(primer));
	for(int i=2;i*i<MAXN;i++)
	{
		if(!primer[i])
			for(int j=i;j*i<MAXN;j++)
				primer[i*j]=1;
	}
	int n;
	while(scanf("%d",&n),n)
	{
		bool ok=true;
		if(!primer[n])
			ok=false;
		
		if(ok)
			for(LL i=2;i<n;i++)
			{
				LL temp=pow(i,n,n);
				if(temp!=i)
					{
					ok=false;
					break;
				}
			}
		if(ok) 
			printf("The number %d is a Carmichael number.\n",n);
		else
			printf("%d is normal.\n",n);
	}
	return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页