# 快速幂基本知识

[提交][ 状态 ][ 讨论版]

## 题目描述

Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized primality tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let a be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if the following equation holds: an mod n = a If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, there is bad news. Certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. Write a program to test whether a given integer is a Carmichael number.

## 输入

The input will consist of a series of lines, each containing a small positive number n ( 2 < n < 65, 000). A number n = 0 will mark the end of the input, and must not be processed.

## 输出

For each number in the input, print whether it is a Carmichael number or not as shown in the sample output

## 样例输入

1729
17
561
1109
431
0



## 样例输出

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.



## 来源

UVA toolkit

[提交][ 状态 ][ 讨论版]

#include<cstdio>
#include<cstring>

typedef long long LL;
const int MAXN=65000+10;
bool primer[MAXN];
LL pow(LL x,LL n,LL mod) //x^n%mod
{
LL res=1;
while(n)
{
if( n & 1) res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
int main()
{
memset(primer,0,sizeof(primer));
for(int i=2;i*i<MAXN;i++)
{
if(!primer[i])
for(int j=i;j*i<MAXN;j++)
primer[i*j]=1;
}
int n;
while(scanf("%d",&n),n)
{
bool ok=true;
if(!primer[n])
ok=false;

if(ok)
for(LL i=2;i<n;i++)
{
LL temp=pow(i,n,n);
if(temp!=i)
{
ok=false;
break;
}
}
if(ok)
printf("The number %d is a Carmichael number.\n",n);
else
printf("%d is normal.\n",n);
}
return 0;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120