快速幂基本知识

5人阅读 评论(0) 收藏 举报
分类:

参考博客:::https://blog.csdn.net/java_c_android/article/details/55802041

挑战程序设计竞赛  122页

Carmichael Numbers

时间限制: 1 Sec  内存限制: 64 MB
提交: 16  解决: 7
[提交][ 状态 ][ 讨论版]

题目描述

Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized primality tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let a be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if the following equation holds: an mod n = a If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, there is bad news. Certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. Write a program to test whether a given integer is a Carmichael number.

输入

The input will consist of a series of lines, each containing a small positive number n ( 2 < n < 65, 000). A number n = 0 will mark the end of the input, and must not be processed.

输出

For each number in the input, print whether it is a Carmichael number or not as shown in the sample output

样例输入

1729
17
561
1109
431
0

样例输出

The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

提示

来源

UVA toolkit

[提交][ 状态 ][ 讨论版]

HOMEBack





题目大意:

我们把对任意的1<x<n都有x^n=x mod n成立的合数n称为Carmichael number,给定一个整数n,判断它是不是Carmichael number。

思路:

编译器暂时改为Dev c++ 原来是VS2012 ,为了适应过几周的蓝桥杯编译环境。

直接枚举x用上快速幂即可。

还有要注意的是合数,素数就不是Carmichael number啦。


#include<cstdio>
#include<cstring>

typedef long long LL;
const int MAXN=65000+10;
bool primer[MAXN];
LL pow(LL x,LL n,LL mod) //x^n%mod
{
	LL res=1;
	while(n)
	{
		if( n & 1) res=res*x%mod;
		x=x*x%mod;
		n>>=1;
	}
	return res;
}
int main()
{
	memset(primer,0,sizeof(primer));
	for(int i=2;i*i<MAXN;i++)
	{
		if(!primer[i])
			for(int j=i;j*i<MAXN;j++)
				primer[i*j]=1;
	}
	int n;
	while(scanf("%d",&n),n)
	{
		bool ok=true;
		if(!primer[n])
			ok=false;
		
		if(ok)
			for(LL i=2;i<n;i++)
			{
				LL temp=pow(i,n,n);
				if(temp!=i)
					{
					ok=false;
					break;
				}
			}
		if(ok) 
			printf("The number %d is a Carmichael number.\n",n);
		else
			printf("%d is normal.\n",n);
	}
	return 0;
}

查看评论

在Delphi中用ADSI创建IIS的虚拟目录

先引入类型库(Project|Import Type Library)adsiis.dll、iisext.dll和activeds.tlb新建一个单元,声明unit ActiveDs;interfac...
  • noctwolf
  • noctwolf
  • 2001-03-25 14:26:00
  • 497

快速幂模板

  • 2017年10月18日 11:21
  • 229B
  • 下载

快速幂:一种经过优化的算法

  • 2009年08月04日 17:17
  • 109B
  • 下载

快速幂+快速幂经典例题

快速幂取模算法所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模...
  • zhhe0101
  • zhhe0101
  • 2016-10-15 10:59:48
  • 1543

快速幂的简单解释

快速幂算法,顾名思义就是求幂时速度很快(废话 看了很多博客里的解释,都说得很玄奥……其实快速幂很容易解释的。 比如求3的20次幂,一般我们会用循环乘法来求,也就是需要循环20次。...
  • kencaber
  • kencaber
  • 2016-08-26 16:00:03
  • 1858

LintCode 快速幂

LintCode 快速幂计算ana^{n} % b ,其中a,b和n都是32位的整数。样例 例如 2312^{31} % 3 = 2例如 1001000100^{1000} % 1000 =...
  • shinanhualiu
  • shinanhualiu
  • 2015-12-21 21:43:14
  • 2108

非递归快速幂原理

int quickpow(int m,int n,int k) { int b = 1; while (n > 0) { if (n & 1) ...
  • zy691357966
  • zy691357966
  • 2014-10-02 11:22:33
  • 1908

【每日算法】快速幂

数值的整数次方实现函数double Power(double base, int n) 求base的n次方,不得使用库函数,同时不需要考虑大数问题。Tips问题本身很直观,但是越简单的题越需要细心思...
  • jiange_zh
  • jiange_zh
  • 2016-02-18 11:50:53
  • 3909

快速幂及其简单应用

对快速幂的浅显理解
  • usth_prophet
  • usth_prophet
  • 2017-02-10 03:55:15
  • 124

高精度(快速幂)

https://vijos.org/p/1223 形如2^P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2^P-1不一定也是素数。到1998年底,人们已找到了37个...
  • zjy2015302395
  • zjy2015302395
  • 2017-01-19 17:12:56
  • 375
    个人资料
    持之以恒
    等级:
    访问量: 1万+
    积分: 1999
    排名: 2万+
    最新评论