各种距离
(NOIP常用概念)
By Loi_Peacefuldoge
①欧几里德距离(euclidean metric)
亦被称之为欧几里得度量或欧氏距离
指在n维空间中两点的实际距离,或者是指向量的自然长度
(就是两点间的直线距离)
公式:|x| = √( x[1]^2 + x[2]^2 + … + x[n]^2 )
当然在NOIP我们常用的还是二维空间的公式
|x| = √( x[1]^2 + x[2]^2)
(勾股定理:Excuse me???)
②曼哈顿距离(Manhattan Distance)
曼哈顿距离又称出租车几何,是指两个点在标准坐标系上的绝对轴距总和
名称来源于在大城市中网格状的街道(类似就像纽约曼哈顿)走最短路,你不能斜着穿过建筑物,只能走直线,沿着平行于坐标轴的路径移动,显然是没有捷径的,因此就只有一种(以及它的各种投影们)
自行类比小学数学题……
图中红线代表曼哈顿距离,绿线代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的曼哈顿距离。
③切比雪夫距离(Chebyshev distance)
就是指横纵距离中的较大值为这两点间的切比雪夫距离。
而数学上,切比雪夫距离(亦称L∞度量)是指向量空间中的一种度量,二个点之间的距离定义为其各座标数值差的最大值。
例如点(x1,y1)和点(x2,y2),这两点间的切比雪夫距离为max(|x2-x1|,|y2-y1|)。
再举一个棋盘的例子
图示棋盘中,棋子从当前位置f6走到位置d4,(f6为1)则其切比雪夫距离为6。
THE END
其实本来还想写一些很强的东西(比如马氏距离),然而自己都看不明白TAT于是就放弃了这些对noip应该是够了