OpenCV-Python实战(19)——OpenCV与深度学习的碰撞

本文介绍了如何使用OpenCV的DNN模块结合深度学习进行图像预处理,包括cv2.dnn.blobFromImage()函数的详细使用。接着,展示了OpenCV在人脸检测和图像分类的应用,如AlexNet、GoogLeNet、ResNet和SqueezeNet。最后,探讨了OpenCV用MobileNet-SSD和YOLO V3进行目标检测的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

OpenCV 中包含深度神经网络 (Deep Neural Networks, DNN) 模块,可以使用深度神经网络实现前向计算(推理阶段),使用一些流行的深度学习框架进行预训练的网络(例如 CaffeTensorFlowPytorchDarknet 等)就可以轻松用在 OpenCV 项目中了。
《深度学习简介与入门示例》中,我们已经介绍了许多流行的深度学习网络架构。在本文中,我们将学习如何将这些架构应用于目标检测和图像分类。

1. cv2.dnn.blobFromImage() 函数详解

OpenCV 中深度神经网络为了执行前向计算,其输入应该是一个 blobÿ

评论 77
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值