Keras深度学习实战(27)——循环神经网络详解与实现

本文介绍了循环神经网络(RNN)在处理序列数据时的优势,详细阐述了RNN的架构、内存存储机制,并通过实例展示了如何从零开始构建RNN模型,包括模型分析、Python实现以及模型验证。
摘要由CSDN通过智能技术生成

0. 前言

我们已经学习了多种将文本表示为向量的方法,并且学习了如何利用这些向量表示进行情感分类。但这种方法的缺点之一是没有考虑单词的顺序,例如,使用这类方法时,句子 A is faster than B 与句子 B is faster than A 具有相同的含义表示,因为这两个句子中的词完全相同,但由于它们的词序不同,实际上应具有不同的含义。在需要保留单词顺序的情况下,循环神经网络 (Recurrent neural networks, RNN) 将会派上用场。

1. 循环神经网络 (Recurrent Neural Network, RNN) 架构简介

1.1 传统文本处理方法的局限性

当我们要在给定事件序列的情况下预测下一个事件时,循环神经网络 (Recurrent Neural Network, RNN) 非常有用。一个简单的示例是,预测 This is an _____ 横线上的单词。
传统的文本分析技术解决该问题的方式通常需要对每个单词进行编码,同时为潜在的新单词提供附加索引:


                
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值