Keras深度学习实战——使用长短时记忆网络构建情感分析模型
0. 前言
我们已经学习了如何使用循环神经网络 (Recurrent neural networks, RNN) 构建情感分析模型,为了将循环神经网络与长短时记忆网络 (Long Short Term Memory, LSTM) 的性能进行对比,同时也为了加深对 LSTM 的了解,在节中,我们将使用 LSTM 来完成同样的情感分类任务。
1. 构建 LSTM 模型进行情感分类
1.1 数据集分析
接下来,我们将实现 LSTM 构建情感分析模型,所用的数据集与在《构建单词向量》一节中使用的数据集相同,即航空公司 Twitter 数据集,模型的目标是预测用户对于航空公司的评价属于正面、负面或者中立。
本文介绍了如何使用Keras构建基于LSTM的情感分析模型,包括单层和多层LSTM的情感分类,通过分析数据集、模型构建及训练,展示LSTM在情感预测中的应用和性能提升。
订阅专栏 解锁全文
7406

被折叠的 条评论
为什么被折叠?



