Keras深度学习实战(43)——深度Q学习算法

本文介绍了Q学习与深度Q学习的基本思想,并通过Keras实现了解决FrozenLake和CartPole问题。在FrozenLake游戏中,详细阐述了环境分析、模型策略和Q学习算法的应用。在CartPole问题中,解释了问题背景,模型分析,并展示了如何使用深度Q学习算法保持杆的平衡。

0. 前言

《强化学习基础》一节中,我们学习了强化学习的基本概念,并且介绍了如何在给定状态下采取随机动作。此外,我们还使用自定义环境,计算下一个状态、动作和奖励。在本节中,我们首先介绍 Q 学习与深度 Q 学习的基本思想,然后利用 OpenAIGym 库模拟 Frozen LakeCartPole 问题,并使用 Keras 实现 Q 学习解决这两个问题。

1. Q 学习简介

状态-动作值函数 (State-Action Value Function),简称 Q 函数,定义为从状态 s t s_t s

评论 28
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值