Keras深度学习实战(43)——深度Q学习算法
0. 前言
在《强化学习基础》一节中,我们学习了强化学习的基本概念,并且介绍了如何在给定状态下采取随机动作。此外,我们还使用自定义环境,计算下一个状态、动作和奖励。在本节中,我们首先介绍 Q 学习与深度 Q 学习的基本思想,然后利用 OpenAI 的 Gym 库模拟 Frozen Lake 和 CartPole 问题,并使用 Keras 实现 Q 学习解决这两个问题。
1. Q 学习简介
状态-动作值函数 (State-Action Value Function),简称 Q 函数,定义为从状态 s t s_t s
本文介绍了Q学习与深度Q学习的基本思想,并通过Keras实现了解决FrozenLake和CartPole问题。在FrozenLake游戏中,详细阐述了环境分析、模型策略和Q学习算法的应用。在CartPole问题中,解释了问题背景,模型分析,并展示了如何使用深度Q学习算法保持杆的平衡。
订阅专栏 解锁全文





