PyTorch深度学习实战(7)——批大小对神经网络训练的影响

0. 前言

在神经网络中,批( batch )是指一次输入网络进行训练或推断的一组样本。批处理( batch processing )是指将这一组样本同时输入网络进行计算的操作。本节中首先介绍批( Batch )的基本概念,并且介绍批大小在神经网络训练过程中的影响。

1. 批处理概念

在深度学习中,批( Batch )是指一次输入神经网络的一组样本,批处理的思想是将多个样本同时输入网络进行计算,通过并行化的方式提高计算效率。
神经网络训练中,训练数据集 Fashion MNIST 中每批包含 32 个数据样本,每个 epoch 中权重的更新次数较多,每个 epoch 会更新 1,875 次权重( 60,000/32 ≈ 1,875,其中 60,000 是训练图像的数量)。此外,并没有考虑模型对未见过的数据集(验证数据集)上的性能。

在本节中,我们将进行以下实验:

  • 当训练批大小为 32 时,观察模型在训练和验证数据上的损失和准确度
  • 当训练批大小为 30,000 时
评论 93
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值