PyTorch深度学习实战(7)——批大小对神经网络性能的影响
0. 前言
在神经网络中,批( batch )是指一次输入网络进行训练或推断的一组样本。批处理( batch processing )是指将这一组样本同时输入网络进行计算的操作。本节中首先介绍批( Batch )的基本概念,并且介绍批大小在神经网络训练过程中的影响。
1. 批处理概念
在深度学习中,批( Batch )是指一次输入神经网络的一组样本,批处理的思想是将多个样本同时输入网络进行计算,通过并行化的方式提高计算效率。
在神经网络训练中,训练数据集 Fashion MNIST 中每批包含 32 个数据样本,每个 epoch 中权重的更新次数较多,每个 epoch 会更新 1,875 次权重( 60,000/32 ≈ 1,875,其中 60,000 是训练图像的数量)。此外,并没有考虑模型对未见过的数据集(验证数据集)上的性能。
在本节中,我们将进行以下实验:
- 当训练批大小为
32时,观察模型在训练和验证数据上的损失和准确度 - 当训练批大小为
30,000 时
订阅专栏 解锁全文
1643

被折叠的 条评论
为什么被折叠?



