洛谷传送门
BZOJ传送门
题目描述
10年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的梦想,来自杰森座α星的悠悠也是其中之一。
赛车大赛的赛场由 N N N颗行星和 M M M条双向星际航路构成,其中每颗行星都有一个不同的引力值。大赛要求车手们从一颗与这 N N N颗行星之间没有任何航路的天体出发,访问这 N N N颗行星每颗恰好一次,首先完成这一目标的人获得胜利。
由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。
天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大的星球,否则赛车就会发生爆炸。
尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少的时间完成比赛。
输入输出格式
输入格式:
输入文件starrace.in的第一行是两个正整数 N N N, M M M。
第二行 N N N个数 A 1 ∼ A N A_1\sim A_N A1∼AN,其中Ai表示使用能力爆发模式到达行星 i i i所需的定位时间。
接下来 M M M行,每行 3 3 3个正整数 u i , v i , w i u_i, v_i, w_i ui,vi,wi,表示在编号为 u i u_i ui和 v i v_i vi的行星之间存在一条需要航行 w i w_i wi时间的星际航路。
输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有两颗行星引力值相同。
输出格式:
输出文件starrace.out仅包含一个正整数,表示完成比赛所需的最少时间。
输入输出样例
输入样例#1:
3 3
1 100 100
2 1 10
1 3 1
2 3 1
输出样例#1:
12
输入样例#2:
3 3
1 2 3
1 2 100
1 3 100
2 3 100
输出样例#2:
6
输入样例#3:
4 5
100 1000 10 100
1 2 100
2 3 100
4 3 100
1 3 20
2 4 20
输出样例#3:
230
说明
样例一说明:先使用能力爆发模式到行星 1 1 1,花费时间 1 1 1。
然后切换到高速航行模式,航行到行星 2 2 2,花费时间 10 10 10。
之后继续航行到行星 3 3 3完成比赛,花费时间 1 1 1。
虽然看起来从行星 1 1 1到行星 3 3 3再到行星 2 2 2更优,但我们却不能那样做,因为那会导致超能电驴爆炸。
【数据规模和约定】
对于30%的数据 N ≤ 20 N≤20 N≤20, M ≤ 50 M≤50 M≤50;
对于70%的数据 N ≤ 200 N≤200 N≤200, M ≤ 4000 M≤4000 M≤4000;
对于100%的数据 N ≤ 800 N≤800 N≤800, M ≤ 15000 M≤15000 M≤15000。输入数据中的任何数都不会超过 1 0 6 10^6 106。
输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到自己的航道。
解题分析
带权的路径覆盖, 改成费用流就好了。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <queue>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 2050
#define S 0
#define INF 1e8
template <class T>
IN void in(T &x)
{
x = 0; R char c = gc;
for (; !isdigit(c); c = gc);
for (; isdigit(c); c = gc)
x = (x << 1) + (x << 3) + c - 48;
}
template <class T> IN T min(T a, T b) {return a < b ? a : b;}
int n, m, cnt, T, ans;
int head[MX], pre[MX], dis[MX], del[MX];
bool inq[MX];
struct Edge {int to, cst, fl, nex;} edge[200500];
IN void add(R int from, R int to, R int fl, R int cst)
{
edge[++cnt] = {to, cst, fl, head[from]}, head[from] = cnt;
edge[++cnt] = {from, -cst, 0, head[to]}, head[to] = cnt;
}
namespace MCMF
{
std::queue <int> q;
IN bool SPFA()
{
std::memset(dis, 63, sizeof(dis));
dis[S] = 0, del[S] = INF; R int now; q.push(S);
W (!q.empty())
{
now = q.front(); q.pop();
for (R int i = head[now]; ~i; i = edge[i].nex)
{
if (edge[i].fl && dis[edge[i].to] > dis[now] + edge[i].cst)
{
dis[edge[i].to] = dis[now] + edge[i].cst;
del[edge[i].to] = min(del[now], edge[i].fl);
pre[edge[i].to] = i;
if (!inq[edge[i].to]) inq[edge[i].to] = true, q.push(edge[i].to);
}
}
inq[now] = false;
}
return dis[T] < INF;
}
IN void updata()
{
R int now = T, pr;
ans += del[T] * dis[T];
W (now)
{
pr = pre[now];
edge[pr].fl -= del[T];
edge[pr ^ 1].fl += del[T];
now = edge[pr ^ 1].to;
}
}
IN void init()
{
W (SPFA()) updata();
printf("%d", ans);
}
}
int main(void)
{
int foo, bar, buf;
std::memset(head, cnt = -1, sizeof(head));
in(n), in(m); T = n * 2 + 1;
for (R int i = 1; i <= n; ++i) in(foo), add(S, i + n, 1, foo), add(S, i, 1, 0), add(i + n, T, 1, 0);
for (R int i = 1; i <= m; ++i)
{
in(foo), in(bar), in(buf);
if (foo > bar) std::swap(foo, bar);
add(foo, bar + n, 1, buf);
}
MCMF::init();
}