如何利用情感词典做中文文本的情感分析?

如何利用情感词典做中文文本的情感分析?

这是本学期在大数据哲学与社会科学实验室做的第四次分享了。

第一次分享的是:如何利用“wordcloud+jieba”制作中文词云?

第二次分享的是:如何爬取知乎中问题的回答以及评论的数据?

第三次分享的是:如何做中文文本的情感分析?

本次给大家分享的是利用情感词典进行中文文本分类的方法,这种方法是对人的记忆和判断思维的最简单的模拟,如图所示。

我们首先通过学习来记忆一些基本词汇,如否定词语有“不”,积极词语有“喜欢”、“爱”,消极词语有“讨厌”、“恨”等,从而在大脑中形成一个基本的语料库。

然后,我们再对输入的句子进行最直接的拆分,看看我们所记忆的词汇表中是否存在相应的词语。

接着,根据这个词语的类别来判断情感,比如“我喜欢数学”,“喜欢”这个词在我们所记忆的积极词汇表中,所以我们判断它具有积极的情感。

基于上述思路,我们可以通过以下几个步骤实现基于情感词典的中文文本情感分类:

  • Step01:准备各类词典(积极情感词典、消极情感词典、否定词词典、程度副词词典)
  • Step02:对句子进行分词
  • Step03:进行情感判断

整个过程如下图所示。

1. 准备各类词典

一般来说,词典是文本感情分类最核心的地方。情感词典通常分为四个部分:积极情感词典、消极情感词典、否定词典以及程度副词词典。

目前最常用的词典如下:

  • 清华大学李军中文褒贬义词典
  • Hownet知网情感词典
  • 台湾大学NTUSD
  • 大连理工大学中文情感词汇本体库

本文用到的词典如下:

2. 句子分词

Python中比较常用的分词库是“jieba”,俗称“结巴分词”。

安装“jieba”的过程也比较简单,支持Python的pip安装,命令如下:

pip install jieba

“jieba”常用的函数非常少,通常只有一个cut()函数。

cut(sentence, cut_all=False, HMM=True):将包含中文的整个句子分割成单独的词。

  • sentence:要进行分词的句子。
  • cut_all:模型类型,True表示完整模式,False表示准确模式。
  • HMM:是否使用隐马尔可夫模型。

下面通过简单的例子来讲述如何使用结巴分词。

【例子】利用准确模式分词。

import jieba

text = "中华民族创造了悠久灿烂的中华文明,为人类作出了卓越贡献。"
words = list(jieba.cut(text, cut_all=False))
print(words)
# ['中华民族', '创造', '了', '悠久', '灿烂', '的', '中华文明', ',', '为', '人类', '作出', '了', '卓越贡献', '。']

【例子】利用完整模式分词。

import jieba

text = "中华民族创造了悠久灿烂的中华文明,为人类作出了卓越贡献。"
words = list(jieba.cut(text, cut_all=True))
print(words)
# ['中华', '中华民族', '民族', '创造', '了', '悠久', '灿烂', '的', '中华', '中华文明', '华文', '文明', '', '', '为', '人类', '作出', '了', '卓越', '卓越贡献', '贡献', '', '']

3. 情感判断

基于情感词典的文本情感分类规则比较机械化。

简单起见,我们将每个积极情感词语赋予权重“1”,将每个消极情感词语赋予权重“-1”,并且假设情感值满足线性叠加原理。如果句子分词后的词语向量包含相应的词语,就加上向前的权值,其中,否定词和程度副词会有特殊的判别规则,否定词会导致权值反号,而程度副词则根据修饰的程度加上相应的数值,在本文档中将权重分为1~6,6个档次(感叹号为第2档)。最后,根据总权值的正负性来判断句子的情感。

以下代码用于加载词典:

def loadDict(fileName, score):
    wordDict = {}
    with open(fileName) as fin:
        for line in fin:
            word = line.strip()
            wordDict[word] = score
    return wordDict


def appendDict(wordDict, fileName, score):
    with open(fileName) as fin:
        for line in fin:
            word = line.strip()
            wordDict[word] = score


def loadExtentDict(fileName, level):
    extentDict = {}
    for i in range(level):
        with open(fileName + str(i + 1) + ".txt") as fin:
            for line in fin:
                word = line.strip()
                extentDict[word] = i + 1
    return extentDict

以下代码用于给词汇赋权值:

postDict = loadDict(u"sentimentDict/积极情感词语.txt", 1)  # 积极情感词典
negDict = loadDict(u"sentimentDict/消极情感词语.txt", -1)  # 消极情感词典
inverseDict = loadDict(u"sentimentDict/否定词语.txt", -1)  # 否定词词典
extentDict = loadExtentDict(u"sentimentDict/程度级别词语", 6)
punc = loadDict(u"sentimentDict/标点符号.txt", 1)
exclamation = {"!": 2, "!": 2}

以下代码是具体的规则:

totalScore = 0  # 记录最终情感得分
lastWordPos = 0  # 记录情感词的位置
lastPuncPos = 0  # 记录标点符号的位置
i = 0  # 记录扫描到的词的位置

for word in wordList:
    if word in punc:
        lastPuncPos = i

    if word in postDict: # 积极情感词语处理的规则
        if lastWordPos > lastPuncPos:
            start = lastWordPos
        else:
            start = lastPuncPos

        score = 1
        for word_before in wordList[start:i]: # 前面是否有否定词和副词
            if word_before in extentDict:
                score = score * extentDict[word_before]
            if word_before in inverseDict:
                score = score * -1
        for word_after in wordList[i + 1:]: # 后面是否带感叹号
            if word_after in punc:
                if word_after in exclamation:
                    score = score + 2
                else:
                    break
        lastWordPos = i
        totalScore += score
    elif word in negDict: # 消极情感词语处理的规则
        if lastWordPos > lastPuncPos:
            start = lastWordPos
        else:
            start = lastPuncPos
        score = -1
        for word_before in wordList[start:i]: # 前面是否有否定词和副词
            if word_before in extentDict:
                score = score * extentDict[word_before]
            if word_before in inverseDict:
                score = score * -1
        for word_after in wordList[i + 1:]:  # 后面是否带感叹号
            if word_after in punc:
                if word_after in exclamation:
                    score = score - 2
                else:
                    break
        lastWordPos = i
        totalScore += score
    i = i + 1

4. 补充说明

在如今的网络信息时代,新词的出现如雨后春笋,其中包括“新构造网络词语”以及“将已有词语赋予新的含义”;另一方面,我们整理的情感词典中,也不可能完全包含已有的情感词语。因此,自动扩充情感词典是保证情感分类模型时效性的必要条件。

目前,通过网络爬虫等手段,我们可以从微博、社区中收集到大量的评论数据,为了从这大批量的数据中找到新的具有情感倾向的词语,可以用无监督学习式的词频统计。

我们的目标是“自动扩充”,因此我们要达到的目的是基于现有的初步模型来进行无监督学习,完成词典扩充,从而增强模型自身的性能,然后再以同样的方式进行迭代,这是一个正反馈的调节过程。虽然我们可以从网络中大量抓取评论数据,但是这些数据是无标注的,我们要通过已有的模型对评论数据进行情感分类,然后在同一类情感(积极或消极)的评论集合中统计各个词语的出现频率,最后将积极、消极评论集的各个词语的词频进行对比。某个词语在积极评论集中的词频相当低,在消极评论集中的词频相当高,那么我们就有把握将该词语添加到消极情感词典中,或者说,赋予该词语负的权值。

举例来说,假设我们的消极情感词典中并没有“黑心”这个词语,但是“可恶”、“讨厌”、“反感”、“喜欢”等基本的情感词语在情感词典中已经存在,那么我们就会能够将下述句子正确地进行情感分类:

句子权值
这个黑心老板太可恶了-2
我很反感这黑心企业的做法-2
很讨厌这家黑心店铺-2
这家店铺真黑心!0

其中,由于消极情感词典中没有“黑心”这个词语,所以“这家店铺真黑心!”就只会被判断为中性(即权值为0)。分类完成后,对所有词频为正和为负的分别统计各个词频,我们发现,新词语“黑心”在负面评论中出现很多次,但是在正面评论中几乎没有出现,那么我们就将黑心这个词语添加到我们的消极情感词典中,然后更新我们的分类结果:

句子权值
这个黑心老板太可恶了-3
我很反感这黑心企业的做法-3
很讨厌这家黑心店铺-3
这家店铺真黑心!-2

于是我们就通过无监督式的学习扩充了词典,同时提高了准确率,增强了模型的性能。这是一个反复迭代的过程,前一步的结果可以帮助后一步的进行。

5. 总结

基于情感词典的文本情感分类是容易实现的,其核心之处在于对情感词典的积累。

最后,把完整的代码和测试放在这里,方便大家使用。

import jieba


def loadDict(fileName, score):
    wordDict = {}
    with open(fileName) as fin:
        for line in fin:
            word = line.strip()
            wordDict[word] = score
    return wordDict


def appendDict(wordDict, fileName, score):
    with open(fileName) as fin:
        for line in fin:
            word = line.strip()
            wordDict[word] = score


def loadExtentDict(fileName, level):
    extentDict = {}
    for i in range(level):
        with open(fileName + str(i + 1) + ".txt") as fin:
            for line in fin:
                word = line.strip()
                extentDict[word] = i + 1
    return extentDict


def getScore(content):
    postDict = loadDict(u"sentimentDict/积极情感词语.txt", 1)  # 积极情感词典
    negDict = loadDict(u"sentimentDict/消极情感词语.txt", -1)  # 消极情感词典
    inverseDict = loadDict(u"sentimentDict/否定词语.txt", -1)  # 否定词词典
    extentDict = loadExtentDict(u"sentimentDict/程度级别词语", 6)
    punc = loadDict(u"sentimentDict/标点符号.txt", 1)
    exclamation = {"!": 2, "!": 2}

    words = jieba.cut(content)
    wordList = list(words)
    print(wordList)

    totalScore = 0  # 记录最终情感得分
    lastWordPos = 0  # 记录情感词的位置
    lastPuncPos = 0  # 记录标点符号的位置
    i = 0  # 记录扫描到的词的位置

    for word in wordList:
        if word in punc:
            lastPuncPos = i

        if word in postDict:
            if lastWordPos > lastPuncPos:
                start = lastWordPos
            else:
                start = lastPuncPos

            score = 1
            for word_before in wordList[start:i]:
                if word_before in extentDict:
                    score = score * extentDict[word_before]
                if word_before in inverseDict:
                    score = score * -1
            for word_after in wordList[i + 1:]:
                if word_after in punc:
                    if word_after in exclamation:
                        score = score + 2
                    else:
                        break
            lastWordPos = i
            totalScore += score
        elif word in negDict:
            if lastWordPos > lastPuncPos:
                start = lastWordPos
            else:
                start = lastPuncPos
            score = -1
            for word_before in wordList[start:i]:
                if word_before in extentDict:
                    score = score * extentDict[word_before]
                if word_before in inverseDict:
                    score = score * -1
            for word_after in wordList[i + 1:]:
                if word_after in punc:
                    if word_after in exclamation:
                        score = score - 2
                    else:
                        break
            lastWordPos = i
            totalScore += score
        i = i + 1

    return totalScore

测试情感分类的代码如下:

content = u"你真的是一个非常好的人!"
print(getScore(content))  # 11
content = u"这种行为非常的丑陋,无耻!"
print(getScore(content))  # -6

参考文献:

  • https://kexue.fm/archives/3360
  • https://blog.csdn.net/maxMikexu/article/details/106050067
评论 77
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青少年编程备考

感谢您的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值