D e s c r i p t i o n Description Description
在一个 n ∗ m 的矩阵 A 的所有位置中分别填入 0 或 1,要求填入的数必须满足 Ai,j ≤ Ai,j+1 且
Ai,j ≤ Ai+1,j。询问一共有多少种不同的矩阵,并将答案对 1, 000, 000, 007 取模。
I n p u t Input Input
共一行包含两个整数 n 和 m。
O u t p u t Output Output
共一行包含一个整数 ans,表示矩阵个数模 1, 000, 000, 007 的值。
S a m p l e Sample Sample I n p u t Input Input
2 2
S a m p l e Sample Sample O u t p u t Output Output
6
E x p l a i n Explain Explain
对于 60% 的数据:n, m, k ≤ 300
对于 100% 的数据:n, m, k ≤ 5000
T r a i n Train Train o f of of T h o u g h t Thought Thought
设
f
[
n
]
[
m
]
=
2
f[n][m]=2
f[n][m]=2
则最右列和最下行为
f
[
i
]
[
m
]
=
f
[
i
+
1
]
[
m
]
+
1
f[i][m]=f[i+1][m]+1
f[i][m]=f[i+1][m]+1
f
[
n
]
[
j
]
=
f
[
n
]
[
j
+
1
]
+
1
f[n][j]=f[n][j+1]+1
f[n][j]=f[n][j+1]+1
然后别的就是
f
[
i
]
[
j
]
]
=
f
[
i
−
1
]
[
j
]
+
f
[
i
]
[
j
−
1
]
f[i][j]]=f[i-1][j]+f[i][j-1]
f[i][j]]=f[i−1][j]+f[i][j−1]
C o d e Code Code
#include<cstdio>
int n,m,f[5005][5005];
int main()
{
scanf("%d%d",&n,&m);
f[n][m]=2;
for (int i=n-1; i>=1; --i)
f[i][m]=(f[i+1][m]+1) % 1000000007;
for (int j=m-1; j>=1; --j)
f[n][j]=(f[n][j+1]+1) % 1000000007;
for (int i=n-1; i>=1; --i)
for (int j=m-1; j>=1; --j)
f[i][j]+=(f[i+1][j]+f[i][j+1]) % 1000000007;
printf("%d",f[1][1]);
}