【DP】I Will Like Matrix!

D e s c r i p t i o n Description Description

在一个 n ∗ m 的矩阵 A 的所有位置中分别填入 0 或 1,要求填入的数必须满足 Ai,j ≤ Ai,j+1 且
Ai,j ≤ Ai+1,j。询问一共有多少种不同的矩阵,并将答案对 1, 000, 000, 007 取模。

I n p u t Input Input

共一行包含两个整数 n 和 m。

O u t p u t Output Output

共一行包含一个整数 ans,表示矩阵个数模 1, 000, 000, 007 的值。

S a m p l e Sample Sample I n p u t Input Input

2 2

S a m p l e Sample Sample O u t p u t Output Output

6

E x p l a i n Explain Explain

对于 60% 的数据:n, m, k ≤ 300
对于 100% 的数据:n, m, k ≤ 5000

T r a i n Train Train o f of of T h o u g h t Thought Thought

f [ n ] [ m ] = 2 f[n][m]=2 f[n][m]=2
则最右列和最下行为
f [ i ] [ m ] = f [ i + 1 ] [ m ] + 1 f[i][m]=f[i+1][m]+1 f[i][m]=f[i+1][m]+1
f [ n ] [ j ] = f [ n ] [ j + 1 ] + 1 f[n][j]=f[n][j+1]+1 f[n][j]=f[n][j+1]+1
然后别的就是 f [ i ] [ j ] ] = f [ i − 1 ] [ j ] + f [ i ] [ j − 1 ] f[i][j]]=f[i-1][j]+f[i][j-1] f[i][j]]=f[i1][j]+f[i][j1]

C o d e Code Code

#include<cstdio>
int n,m,f[5005][5005];
int main()
{
	scanf("%d%d",&n,&m);
	f[n][m]=2;
	for (int i=n-1; i>=1; --i)
	 f[i][m]=(f[i+1][m]+1) % 1000000007;
	for (int j=m-1; j>=1; --j)
	 f[n][j]=(f[n][j+1]+1) % 1000000007;
	for (int i=n-1; i>=1; --i)
	 for (int j=m-1; j>=1; --j)
	  f[i][j]+=(f[i+1][j]+f[i][j+1]) % 1000000007;
	printf("%d",f[1][1]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值